Power stations in cells may protect brain against Parkinson's

January 15, 2018

Mitochondria are microscopic power stations found inside our cells. They convert foodstuffs (nutrients) into fuel, providing our bodies with the energy they need.

In 1989, studies in brain tissue from individuals with Parkinson's disease showed that an essential component of the mitochondrial energy generators, called respiratory complex-I, becomes impaired in an area of the brain called the "substantia nigra" (latin for "the black substance"). Since this area is particularly vulnerable to Parkinson's disease, this observation led to the hypothesis that complex I deficiency is highly deleterious and contributes to neurodegeneration.

A new study from the University of Bergen (UiB), in Norway, in collaboration with the University of Cambridge, shows that the function of mitochondria, the microscopic powerhouses of the cell, is altered throughout the entire brain of individuals with Parkinson's disease. Ominous as this may sound, it might actually not be deleterious for patients.

"This new study shows that complex I deficiency is, in fact, a global phenomenon in the brain of persons with Parkinson's disease, and is found indiscriminately in both affected and healthy brain regions. Intriguingly, brain cells (neurons) with decreased complex I levels are significantly less likely to contain Lewy bodies, the abnormal protein-aggregates that characterize Parkinson's disease," says researcher Charalampos Tzoulis at Department of Clinical Science, UiB.

These discoveries suggest that, contrary to mainstream theory, mitochondrial complex I deficiency may not be entirely deleterious for the brain in Parkinson's disease.

"It is possible that complex I deficiency is part of a compensatory regulation attempting to protect the brain in Parkinson's disease, for instance via decreased production of oxidative free radical species. Further work will be necessary to understand why and how mitochondrial function is regulated in Parkinson's disease and whether this can be exploited for treatment," Charalampos Tsouliz exlplains.
-end-
Facts Parkinson's disease



The University of Bergen

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.