Nav: Home

How Candida albicans exploits lack of oxygen to cause disease

January 15, 2019

journal MBio, a publication of the American Society of Microbiology. "It was very surprising to see that the fungus does not require oxygen to cause disease. Unexpectedly, the microbial pathogen could even use low oxygen environments to evade immune attack and to become more virulent." - says Constantin Urban, Associated Professor at the Department of Clinical Microbiology. The recent work of his group aims to elucidate how adaption of microbial fungi to low oxygen environments influences their recognition by immune cells and their ability to thrive and cause harmful infection within the host. Interestingly, C. albicans is a commensal microbe of our gastrointestinal system and when natural barriers fail, due to immunosuppressive disease or treatment, C. albicans can spread from its natural reservoir and invade the body to cause life-threatening, systemic disease. "We now understand how C. albicans under these circumstances exploits the training from anoxic commensal niches to thrive in deep-seeded body sites which quickly induce inflammation and immune cell recruitment. Both processes rapidly exhaust oxygen and in turn create low oxygen milieus." - continues Dr. Urban.

Systemic infection, which often results in sepsis takes the lives of the vast majority of critically-ill patients in a rapid manner and is a global threat. According to the World Health Organization, sepsis is estimated to affect more than 30 million people worldwide every year, potentially leading to 6 million deaths. From those 3 million are newborns and 1.2 million are children. Candida albicans is the most common fungal pathogen and a common cause of sepsis. While most individuals are infected with Candida albicans since birth, the infection causes serious illness or even death, particularly among those with a weakened immune system. Their new study is a step towards the characterization of immune responses under low oxygen levels, a frequent stress condition during inflammation and infection. Particularly neutrophils, the most abundant white blood cell and essential defence line against fungal microbes, where hampered in their ability to attack and eradicate C. albicans under low oxygen conditions, whereas the neutrophils' metabolism and viability seemed unaffected.

Our work is clinically relevant, since current fungal therapy is hampered by toxic side effects and ineffectiveness. We gained insight into mechanisms which fungal pathogens use to circumvent immune surveillance in environments lacking oxygen. Hence, our study aims for identification of future therapy strategies to reduce premature deaths and to improve patients' life quality. But I always liked to think outside the box.", explains Pedro Lopes, recently graduated PhD student in the group and first author of the study. "Fungi are very versatile organisms which can grow at almost any place. Interestingly, growing fungi were spotted at the international space station (ISS). Ongoing research attempts to elucidate how fungal microbes thrive under these conditions. Our investigations open up new avenues to study fungal adaptation to hypoxic environments, such as within our bodies or at space stations." - concludes Dr. Lopes.

The report describing the work was published this month by the journal MBio back to back to a complementary but independent study by researchers from Aberdeen University elegantly delineating the cellular processes of C. albicans that regulate fungal adaption to hypoxia. Both articles demonstrate the timeliness and importance of understanding adaption to hypoxia during infection.
-end-
To read more follow the link to the article from the group based at Umeå University https://mbio.asm.org/content/9/6/e02120-18.long

And the link to the article from the group at University of Aberdeen https://mbio.asm.org/content/9/6/e01318-18

For more information please contact:

J. Pedro Lopes - pedro.lopes@umu.se; Department of Clinical Microbiology, Umeå University, 90185 Umeå Constantin F. Urban - constantin.urban@umu.se; Department of Clinical Microbiology, Umeå University, 90185 Umeå, Umeå Centre for Microbial research (UCMR) & Molecular Infection Medicine Sweden (MIMS) within the EMBL Nordic Partnership for Molecular Medicine

Picture caption: An electron micrograph of neutrophils interacting with a fungal biofilm in an anoxic environment. Neutrophils are not able to respond with their full antifungal potential. The image was acquired at the Umeå Core Facility for Electron Microscopy.

Umea University

Related Sepsis Articles:

Study changes guidelines for sepsis management
University of Arizona Health Sciences researcher ends debate among physicians regarding sepsis management.
Improving outcomes for sepsis patients
More than 1 million sepsis survivors are discharged annually from acute care hospitals in the United States.
Genes linked to death from sepsis ID'd in mice
Bacteria in the bloodstream can trigger an overwhelming immune response that causes sepsis.
Identifying therapeutic targets in sepsis' cellular videogame
Exciting new research has defined the chain of molecular events that goes awry in sepsis, opening up opportunities for new treatments to fight the condition that affects more than a million Americans each year and kills up to a third of them.
KAIST identifies the cause of sepsis-induced lung injury
A KAIST research team succeeded in visualizing pulmonary microcirculation and circulating cells in vivo with a custom-built 3D intravital lung microscopic imaging system.
New computer-aided model may help predict sepsis
Can a computer-aided model predict life-threatening sepsis? A model developed in the UK that uses routinely collected data to identify early symptoms of sepsis, published in CMAJ, shows promise.
Sepsis a leading cause of death in US hospitals but many deaths may not be preventable
A research team at Brigham and Women's Hospital has comprehensively reviewed the characteristics and clinical management of patients who died with sepsis.
How common, preventable are sepsis-associated deaths in hospitals?
This study estimates how common sepsis-related deaths are in hospitals and how preventable those deaths might be.
Antidepressant could stop deadly sepsis, study suggests
An antidepressant drug used to treat obsessive-compulsive disorder could save people from deadly sepsis, new research suggests.
Secret to sepsis may lie in rare cell
In a paper published in Nature Immunology, scientists from Seattle Children's Research Institute reveal how a rare group of white blood cells called basophils play an important role in the immune response to a bacterial infection, preventing the development of sepsis.
More Sepsis News and Sepsis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.