Power stations driven by light

January 15, 2019

The smallest building blocks within the power stations of organisms which get their energy directly from the sun are basically miniature reactors surrounded by collectors which capture photons and forward them to the centre. The close correlation between structure and interaction of the components boosts productivity, a strategy which an international team of researchers is using for increasing the efficiency of solar technology. At Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), research is being carried out in this area by the Chair of Physical Chemistry I, and the latest results have been published in the prestigious journal Nature Chemistry.

Green plants, algae and some bacteria use sunlight to convert energy. The pigments in chlorophyll absorb electromagnetic radiation which induces chemical reactions in electrons. These reactions take place in the nucleus of complex protein structures, referred to by experts as photosystems I and II. The processes which take place in these photosystems are induced by catalysts in a certain order. In the first step, oxygen is released from water. The following reaction prepares the production of carbohydrates for which no further source of energy is needed.

The reaction centres of the photosystems are encircled by light-absorbing pigments grouped into consolidated complexes. These antennae increase the area available for light rays to hit and extend the spectrum of usable wavelengths, both prerequisites for a favourable energy balance. Each reactor core is surrounded by approximately 30 antennae. Experiments conducted by scientists are still far from replicating the complexity of nature. In general, a ratio of 1:1 is the best that can be achieved: one light-absorbing molecule in combination with one catalyst for oxidising water.

The group of researchers led by Prof. Dr. Dirk Guldi and his former employee Dr. Konstantin Dirian hope to revolutionise solar technology by synthesising modules based on the correlation between structure and function in photosystem II. In the newly developed systems, light-absorbing crystals such as those which are already used in LEDs, transistors and solar cells are layered into a network of hexagonal honeycombs around a water-oxidising catalyst with four ruthenium metal atoms in the centre. When shown in a rather simplified manner, the compact, stable units made up of two components with a common long axis are reminiscent of cylindrical batteries. In the self-assembling chemical process, such 'miniature power stations' create two dimensional slats. Like layers in a gateau, they form a common block which collects the energy won from the sun's rays.

This is not an entirely accurate reproduction of the ideal arrangement found in the natural photosystem, but the principle is the same. Five macromolecules in the shape of a honeycomb with the ability to capture light create a sheath around each reactor core, and it has been shown that these small power stations are efficient and successful at harvesting sun energy. They have an efficiency of over 40 percent, losses are minimal. Wavelengths from the green portion of the colour spectrum, which plants reflect, can also be used. These research results nourish the hope that solar technology can one day make use of the sun's energy as efficiently as nature.
-end-


University of Erlangen-Nuremberg

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.