Scientists identify gene contributing to prostate cancer drug resistance

January 15, 2019

Researchers have discovered how a gene involved in regulating hormone receptors may contribute to drug resistance in some prostate cancer patients.

Their findings, published in eLife, suggest that disrupting specific activity of the GREB1 gene could be explored for developing more effective therapies in future.

Androgens, a male hormone, encourage the growth of prostate cancer cells. Hormone therapies (or 'antiandrogens') have been developed to counter this activity. These treatments, which target a protein molecule activated by the hormone - the androgen receptor (AR) - are effective against advanced prostate cancer but are hindered by a type of drug resistance called castration-resistant prostate cancer (CRPC). The most common cause of this resistance is an increase in both the amount and activity of AR.

Previous studies have shown that increases or mutations in AR are present in over 50% of CRPC patients, and that increases in AR are associated with greater resistance to the next-generation AR inhibitors: abiraterone and enzalutamide.

"Studies have also revealed several differences in AR activity in prostate cancer," explains first author Eugine Lee, Research Fellow in Charles Sawyers' lab at Memorial Sloan Kettering Cancer Center, US. "Notably, these differences occur in the absence of genetic alterations in AR, which are generally found only in CRPC. A possible explanation is that AR activity is encouraged by coactivators - other genes and proteins that help the function of AR - and we wanted to see if this is the case."

Lee and her team first isolated prostate cancer cells with low versus high AR activity. They found that those with high AR output have reduced sensitivity to enzalutamide, in the absence of changes in AR protein expression.

They next identified three genes that were most active in cells with high AR output: GREB1, KLF8 and GHRHR. "Of these genes, we prioritised GREB1 for further investigation because it has higher expression levels in primary prostate tumours with high AR activity," says Lee.

Their analysis showed that GREB1 increases AR activity through a novel two-part mechanism: it binds AR and promotes its activity by recruiting AR coactivators (enzymes such as EP300/CBP); and it improves the efficiency of AR binding to DNA, which further enhances AR activity. Importantly, the team found that inhibiting GREB1 converted cells with a high AR output to a low-output state, and improved the effectiveness of enzalutamide treatment.

"Collectively, our results implicate GREB1 as an amplifier of AR activity that contributes to prostate cancer progression and promotes antiandrogen resistance in disease models," concludes senior author and Howard Hughes Medical Institute Investigator Charles Sawyers, Chair of the Human Oncology and Pathogenesis Program at Memorial Sloan Kettering Cancer Center.

"For now, further research is needed to understand the clinical implications of this work - particularly whether GREB1 levels in CRPC patients can be used to predict their response to next-generation AR therapy."

The paper 'GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance' can be freely accessed online at Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

This study was first published on bioRxiv, at

Media contact

Emily Packer, Senior Press Officer


01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Cancer Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at

To read the latest Cancer Biology research published in eLife, visit


Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to