UCI study identifies a new way by which the human brain marks time

January 15, 2019

Irvine, Calif., Jan. 15, 2019 -- With a little help from HBO's "Curb Your Enthusiasm," University of California, Irvine neurobiologists have uncovered a key component of how the human brain marks time.

Using high-powered functional MRI on college students watching the popular TV show, they were able to capture the processes by which the brain stores information related to when events happen, or what is known as temporal memory. The study appears in Nature Neuroscience.

The researchers identified a new network of brain regions involved in these processes, confirming in humans the results of mouse studies reported last summer by Nobel laureate Edvard Moser and colleagues, who pinpointed the nerve cells in the same areas that give each moment a distinctive signature. A News & Views article in Nature Neuroscience highlights how these findings fit together.

Michael Yassa, director of UCI's Center for the Neurobiology of Learning & Memory and senior author on the study, said the research may further understanding of dementia, as these temporal memory regions are the first to experience age-related deficits and also show some of the first pathological hallmarks of Alzheimer's disease, most notably tangles.

"Whether these alterations have consequences for time-related memory remains to be seen; it's something that we are currently testing," he added.

Real-time brain imaging

In the UCI study, participants sat with their heads inside a high-resolution fMRI scanner while watching the TV show and then viewing still frames from the episode, one at a time.

The researchers found that when subjects had more precise answers to questions about what time certain events occurred, they activated a brain network involving the lateral entorhinal cortex and the perirhinal cortex. The team had previously shown that these regions, which surround the hippocampus, are associated with memories of objects or items but not their spatial location. Until now, little had been known about how this network might process and store information about time.

"The field of neuroscience has focused extensively on understanding how we encode and store information about space, but time has always been a mystery," said Yassa, a professor of neurobiology & behavior. "This study and the Moser team's study represent the first cross-species evidence for a potential role of the lateral entorhinal cortex in storing and retrieving information about when experiences happen."

"Space and time have always been intricately linked, and the common wisdom in our field was that the mechanisms involved in one probably supported the other as well," added Maria Montchal, a graduate student in Yassa's lab who led the research. "But our results suggest otherwise."

Testing time-related memory

Yassa said it's worth noting that his group published another report last year in Neuron showing that the lateral entorhinal cortex is dysfunctional in older adults with lower-than-average memory performance. That study did not test memory for time but rather discrimination memory for similar objects.

Most studies examining time in the laboratory employ static objects on a computer screen, Yassa said, but they tell very little about how the brain processes information in the real world. This is why the UCI study used "Curb Your Enthusiasm," a situational comedy that mirrors real life, as it involves people, scenes, dialogue, humor and narrative.

"We chose this show in particular because we thought it contained events that were relatable, engaging and interesting," he said. "We also wanted one without a laugh track. Interestingly, while the show is hilarious for some of us, it did not seem to instigate a lot of laughter among the college undergraduates we tested - which was excellent for us, as we needed to keep their heads inside the scanner."
-end-
The study was supported by grants to Yassa from the National Institute of Mental Health and the National Institute on Aging.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

NOTE TO EDITORS: PHOTO AVAILABLE AT

https://news.uci.edu/2019/01/15/uci-study-identifies-a-new-way-by-which-the-human-brain-marks-time/

University of California - Irvine

Related Neurobiology Articles from Brightsurf:

Tone of voice matters in neuronal communication
Neuronal communication is so fast, and at such a small scale, that it is exceedingly difficult to explain precisely how it occurs.

How the brain's inner clock measures seconds
UCLA researchers have pinpointed a second hand to the brain's internal clock.

Adaptation in single neurons provides memory for language processing
To understand language, we have to remember the words that were uttered and combine them into an interpretation.

Calcium channel subunits play a major role in autistic disorders
Neurobiologists at Johannes Gutenberg University Mainz (JGU) in Germany have found new evidence that specific calcium channel subunits play a crucial role in the development of excitatory and inhibitory synapses.

The neurobiology of social distance
Never before have we experienced social isolation on a massive scale as we have during the evolving COVID-19 pandemic.

Neurobiology of Disease publishes results of AFFiRiS' antibody mAB C6-17 in Huntington's
Monoclonal antibody mAB C6-17 targeting human/mutant huntingtin protein (HTT/mutHTT) was developed and characterized.

New imaging technique sheds light on adult zebrafish brain
Cornell scientists have developed a new technique for imaging a zebrafish's brain at all stages of its development, which could have implications for the study of human brain disorders, including autism.

Worm nerve responses for good and bad
Studies on a tiny soil worm help explain how animal nervous systems translate external signals as 'good' or 'bad' in order to elicit the appropriate response.

Brain imaging may improve diagnosis and treatment of mental health disorders
Brain imaging may one day be used to help diagnose mental health disorders--including depression and anxiety--with greater accuracy, according to a new study conducted in a large sample of youth at the University of Pennsylvania and led by Antonia Kaczkurkin, PhD and Theodore Satterthwaite, MD.

Skull features among Asian and Asian-derived groups differ significantly
Forensic anthropologists have now discovered that several skull features in Asian and Asian-derived groups differ significantly with regard to shape, such that they can be distinguished using statistical analyses.

Read More: Neurobiology News and Neurobiology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.