Nav: Home

Genome doubling, cell size and novelty

January 15, 2019

In the 2019 Coulter Review, "Polyploidy, the Nucleotype, and Novelty: The Impact of Genome Doubling on the Biology of the Cell," published in the International Journal of Plant Sciences (180:1-52), Jeff J. Doyle and Jeremy E. Coate examine the effects of genome doubling on cell biology and the generation of novelty in plants.

Polyploidy, or the presence of more than two chromosomes in a cell, is common across many plant species. This "genome doubling" generates evolutionary novelty and is a prime facilitator of new species. How polyploidy alters cells to generate novelty, however, is complex, and, as Doyle and Coate illustrate, not well understood even on a fundamental level. Rapidly developing technology, however, will enable researchers to shed light not only on this integral part of plant evolution and biology, but also on the function of cells in general.

Many of the documented effects of genome doubling on cells, such as increases in cell size, nuclear volume and cell cycle duration, are hypothesized to be "nucleotypic" - effects induced by changes in bulk DNA amount irrespective of genotype. Doyle and Coate update our understanding of the nucleotype and other mechanisms by which genome doubling can alter cell biology, hightlighting insights gained from studies of synthetic autopolyploids and relating these to the current state of knowledge in the field of cell biology.

Cell size in particular was of great interest to the authors, since it is strongly associated with genome doubling. Though it has long been known that genome size and cell size correlate, recent work shows that this correlation is cell type-specific, and the factors that control cell size, polyploidy or otherwise, remain mysterious.

Doyle and Coate write that they had hoped the long running literature of cell biology would hold the answers to how polyploidy operates at the cellular level. "Instead, we discovered that these questions, as well as a host of other issues needed to address the question of what polyploidy "does," have yet to be answered satisfactorily," they write. "In many cases, there are competing theories, and often there exists a dearth of compelling data even in mature model systems, such as human and yeast, or in the best plant models, such as Arabidopsis and maize, let alone in non-model plant species."

The authors go on to suggest that in order to understand polyploidy, as well as cellular function in general, researchers must shift their focus to quantitative data, such as time resolution, rate constants, and local molecule concentrations, when analyzing polyploids against their diploid progenitors.

Doyle and Coate outline questions on polyploidy research going forward. These include how nuclear crowdedness varies with nuclear size across cell types and species, whether protein stability is affected by polyploidy, and whether changes in transcriptome size associated with polyploidy is a response to increased nuclear volume or vice versa.

"The technology exists to address such questions quantitatively, with ever-increasing precision and at ever-decreasing scales down to individual cells and molecules," they write. "We are now poised to address these questions and to understand what polyploidy 'does.'"
-end-


University of Chicago Press Journals

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...