Difficulties with audiovisual processing contributes to dyslexia in children

January 15, 2019

BUFFALO, N.Y. - A University at Buffalo psychologist has published a neuroimaging study that could help develop tests for early identification of dyslexia, a disorder that effects 80 percent of those diagnosed with difficulties reading, writing and spelling.

Tasks which require audiovisual processing are especially challenging for children with dyslexia, according to Chris McNorgan, an assistant professor in UB's psychology department and project lead for the research published in the journal PLoS ONE.

Designing tests sensitive to the problem of audiovisual integration could determine the presence of a disorder that often goes undetected during the early years of elementary education since many children with dyslexia are considered, initially, as simply being on the lower end of a normal range of reading levels.

"Until these kids with dyslexia are lagging so far behind their peers, there's no way to reasonably assume that they're not part of a continuum of ability, but rather a separate group altogether," says McNorgan.

The study's results suggest that the reading difficulty associated with dyslexia stems from a lack of coordinated processing in the four brain areas known as "the reading network."

"We find that the organization of the brain outside of the core reading network does not appear to be related to how well or poorly dyslexic children read," says McNorgan, an expert in neuroimaging and computational modeling. "This is notable because it would be consistent with dyslexia as a problem related to the wiring specifically of the brain areas associated with integrating auditory and visual information, and not with some other general cognitive disruption, such as memory or attention."

Unlike much previous research on dyslexia that focused on the strength of connections in the reading network, McNorgan and his colleagues looked not only at that strength, but also the manner in which these regions are connected, a critical point in order to better understand dyslexia.

"To think of the 'manner' of connections, by way of analogy, as being separate from 'strength,' a city planner trying to optimize traffic flow is probably not going to be successful by just dropping a multi-lane highway down the middle of a city if the neighborhoods and other city streets are not organized in a way that can take advantage of the extra traffic capacity.

"While connection strength is absolutely an important factor, our results indicate that it is only one of several components of the brain network that is optimized for fluent reading through practice."

In cases of dyslexia, there is no problem with how someone's eyes or how someone's ears work. But reading isn't about just what's seen and heard; it's a multisensory task that involves decoding letters into their associated speech sounds.

"Don't imagine someone as seeing words with scrambled letters or seeing letters upside down," explains McNorgan. "Dyslexia is about being unable to figure out how a particular sequence of letters fits together and then mapping that sequence to a particular sound."

Consider coming across a new word, like reading "Brobdingnagian" for the first time in Jonathan Swift's "Gulliver's Travels." The unfamiliarity requires a laborious effort to unpack the letters' sounds into what becomes the word.

"It's a struggle," says McNorgan. "And though even fluent readers occasionally encounter this difficulty, the exertion required to get the word is what happens all the time for people with dyslexia."

For the current study, McNorgan and UB graduate students Erica Edwards and Kali Burke, and Vanderbilt University collaborator James Booth used fMRI, a technology that measures and maps brain activity, to look at how the regions of the reading network connect and interact.

The 24 participants, ages 8-13, completed rhyming tasks under three conditions: seeing two words; hearing two words; and hearing the first words while seeing the second. The rhyming tasks required participants to map visual representations to sounds.

As the participants completed the tasks, fMRI scans revealed what brain regions were activated and how they were communicating.

"We're taking a brain network perspective," says McNorgan. "We're want to learn, not just what these brain areas are doing, but how are these areas talking to each other."

The goal, says McNorgan, is to determine whether or not the network's configuration is determining the degree to which dyslexic children experience reading difficulty.

"The way things are wired is going to make a big difference in how communication occurs within this network," he says. "And why some children's brains seem to be resistant to becoming optimally wired remains an outstanding question."
-end-


University at Buffalo

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.