Nav: Home

New dinosaur discovered in China shows dinosaurs grew up differently from birds

January 15, 2020

SAN DIEGO, Calif.--A new species of feathered dinosaur has been discovered in China, and described by American and Chinese authors and published today in the journal, The Anatomical Record.

The one-of-a-kind specimen offers a window into what the earth was like 120 million years ago. The fossil preserves feathers and bones that provide new information about how dinosaurs grew and how they differed from birds.

"The new dinosaur fits in with an incredible radiation of feathered, winged animals that are closely related to the origin of birds," said Dr. Ashley Poust, who analyzed the specimens while he was a student at Montana State University and during his time as a Ph.D. student at University of California, Berkeley. Poust is now postdoctoral researcher at the San Diego Natural History Museum.

"Studying specimens like this not only shows us the sometimes-surprising paths that ancient life has taken, but also allows us to test ideas about how important bird characteristics, including flight, arose in the distant past."

Scientists named the dinosaur Wulong bohaiensis. Wulong is Chinese for "the dancing dragon" and references the position of the beautifully articulated specimen.

About the Discovery

The specimen was found more than a decade ago by a farmer in China, in the fossil-rich Jehol Province, and since then has been housed in the collection of The Dalian Natural History Museum in Liaoning, a northeastern Chinese province bordering North Korea and the Yellow Sea. The skeletal bones were analyzed by Poust alongside his advisor Dr. David Varricchio from Montana State University while Poust was a student there.

Larger than a common crow and smaller than a raven, but with a long, bony tail which would have doubled its length, Wulong bohaiensis had a narrow face filled with sharp teeth. Its bones were thin and small, and the animal was covered with feathers, including a wing-like array on both its arms and legs and two long plumes at the end of its tail.

This animal is one of the earliest relatives of Velociraptor, the famous dromaeosaurid theropod dinosaur that lived approximately 75 million years ago. Wulong's closest well-known relative would have been Microraptor, a genus of small, four-winged paravian dinosaurs.

The discovery is significant not only because it describes a dinosaur that is new to science, but also because it shows connection between birds and dinosaurs.

"The specimen has feathers on its limbs and tail that we associate with adult birds, but it had other features that made us think it was a juvenile," said Poust. To understand this contradiction, the scientists cut up several bones of the new dinosaur to examine under a microscope. This technique, called bone histology, is becoming a regular part of the paleontology toolbox, but it's still sometimes difficult to convince museums to let a researcher remove part of a nice skeleton. "Thankfully, our coauthors at the Dalian Natural History Museum were really forward thinking and allowed us to apply these techniques, not only to Wulong, but also to another dinosaur, a close relative that looked more adult called Sinornithosaurus."

The bones showed that the new dinosaur was a juvenile. This means that at least some dinosaurs were getting very mature looking feathers well before they were done growing. Birds grow up very fast and often don't get their adult plumage until well after they are full sized. Showy feathers, especially those used for mating, are particularly delayed. And yet here was an immature dinosaur with two long feathers extending beyond the tip of the tail.

"Either the young dinosaurs needed these tail feathers for some function we don't know about, or they were growing their feathers really differently from most living birds," explained Poust.

An additional surprise came from the second dinosaur the scientists sampled; Sinornithosaurus wasn't done growing either. The bone tissue was that of an actively growing animal and it lacked an External Fundamental System: a structure on the outside of the bone that vertebrates form when they're full size. "Here was an animal that was large and had adult looking bones: we thought it was going to be mature, but histology proved that idea wrong. It was older than Wulong, but seems to have been still growing. Researchers need to be really careful about determining whether a specimen is adult or not. Until we learn a lot more, histology is really the most dependable way."

In spite of these cautions, Poust says there is a lot more to learn about dinosaurs.

"We're talking about animals that lived twice as long ago as T. rex, so it's pretty amazing how well preserved they are. It's really very exciting to see inside these animals for the first time."

About the Jehol Biota

The area in which the specimen was found is one of the richest fossil deposits in the world. The Jehol biota is known for the incredible variety of animals that were alive at the time. It is also one of the earliest bird-rich environments, where birds, bird-like dinosaurs, and pterosaurs all shared the same habitat.

"There was a lot of flying, gliding, and flapping around these ancient lakes," says Poust. "As we continue to discover more about the diversity of these small animals it becomes interesting how they all might have fit into the ecosystem." Other important changes were happening at the same time in the Early Cretaceous, including the spread of flowering plants. "It was an alien world, but with some of the earliest feathers and earliest flowers, it would have been a pretty one."
-end-
Five authors contributed to the manuscript that is scheduled to be published in The Anatomical Record on January 15: Dr. Ashley Poust; Dr. Chunling Gao; Dr. David J. Varricchio; Dr. Jianlin Wu; Fengjiao Zhang.

About the San Diego Natural History Museum

The San Diego Natural History Museum (The Nat) is the second oldest scientific institution in California and the third oldest west of the Mississippi. Founded in 1874 by a small group of citizen scientists, the Museum's mission is to interpret the natural world through research, education, and exhibits; to promote understanding of the evolution and diversity of southern California and the peninsula of Baja California, Mexico; and to inspire in all people respect for the environment. The Museum is located at 1788 El Prado, San Diego, CA 92101 in Balboa Park. For more information, call 877.946.7797 or visit sdnat.org. Follow The Nat on Twitter and Instagram and join the discussion on Facebook.

San Diego Natural History Museum

Related Dinosaur Articles:

The dinosaur in the cupboard under the stairs
The mystery surrounding dinosaur footprints on a cave ceiling in Central Queensland has been solved after more than a half a century.
How did dinosaur parents know when their kids had a fever?
How Did Dinosaur Parents Know When Their Kids Had a Fever?
Dinosaur brains from baby to adult
New research by a University of Bristol palaeontology post-graduate student has revealed fresh insights into how the braincase of the dinosaur Psittacosaurus developed and how this tells us about its posture.
Dinosaur bones are home to microscopic life
Scientists went looking for preserved collagen, the protein in bone and skin, in dinosaur fossils.
Thai dinosaur is a cousin of T. rex
Scientists from the University of Bonn and the Sirindhorn Museum in Thailand have identified two new dinosaur species.
The fossilization process of the dinosaur remains
A piece of work conducted between the UPV/EHU-University of the Basque Country and the University of Zaragoza has conducted an in-depth analysis of the dinosaur fossils at La Cantalera-1, one of the Iberian sites belonging to the Lower Cretaceous with the largest number of vertebrates.
Scientists found new giant dinosaur
Paleontologists from Russia have described a new dinosaur, the Volgatitan.
A toast to the proteins in dinosaur bones
Burnt toast and dinosaur bones have a common trait, according to a new, Yale-led study.
Bigfoot was a dinosaur
The dinosaur foot known as 'Bigfoot,' described in a new scientific paper recently published in the open-access journal PeerJ -- the Journal of Life and Environmental Sciences, was excavated in 1998 by an expedition from the University of Kansas, with Anthony Maltese, lead author of the study, as member of the crew.
Growing a dinosaur's dinner
Scientists have measured the nutritional value of herbivore dinosaurs' diet by growing their food in atmospheric conditions similar to those found roughly 150 million years ago.
More Dinosaur News and Dinosaur Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.