New delivery method promises relief from antipsychotic medication's adverse side effects

January 15, 2021

HAMILTON, ON, Jan. 15, 2021 -- A team of neuroscientists and engineers at McMaster University has created a nasal spray to deliver antipsychotic medication directly to the brain instead of having it pass through the body.

The leap in efficiency means patients with schizophrenia, bipolar disorder and other conditions could see their doses of powerful antipsychotic medications cut by as much as three quarters, which is expected to spare them from sometimes-debilitating side effects while also significantly reducing the frequency of required treatment.

The new method delivers medication in a spray that reaches the brain directly through the nose, offering patients greater ease of use and the promise of improved quality of life, including more reliable, effective treatment.

Ram Mishra, a Professor in the Department of Psychiatry and Behavioural Neurosciences and Co-Director of McMaster's School of Biomedical Engineering, and Todd Hoare, a Canada Research Chair and Professor of Chemical Engineering, describe their research in a newly published article in the Journal of Controlled Release.

They and their co-authors Michael Majcher, Ali Babar, Andrew Lofts, and Fahed Abuhijleh have proven the concept of their new delivery mechanism in rats, using PAOPA, a drug commonly prescribed to treat schizophrenia.

A problem for patients using antipsychotic medications, Mishra explains, is that taking them orally or by injection means the drugs must pass through the body before they reach the brain through the blood. To be sure enough oral or injected medication reaches the brain, a patient must take much more than the brain will ultimately receive, leading to sometimes serious adverse side effects, including weight gain, diabetes, drug-induced movement disorders and organ damage over the long term.

When delivered through the nose, the spray medication can enter the brain directly via the olfactory nerve.

"The trick here is to administer the drug through the back door to the brain, since the front door is sealed so tightly," Mishra says. "This way we can bypass the blood-brain barrier. By delivering the drug directly to the target, we can avoid side effects below the brain."

Mishra and collaborator Rodney Johnson of the University of Minnesota had previously created a water-soluble form of the medication, which was used in the current research. The new form they created was easier to manipulate, but they still lacked an effective vehicle for getting it to the brain. A particular issue was that drugs delivered via the nose are typically cleared from the body quickly, requiring frequent re-administration.

Hoare, in the meantime, had been working with an industrial partner to develop the use microscopic nanoparticles of corn starch for agricultural applications.

The two scientists, who work across campus from one another, came together after researchers in their labs met at an internal McMaster conference. Two of the researchers, Babar and Lofts, worked on the project in both labs.

The engineering team was able to bind the drug to the corn starch nanoparticles that, when sprayed together with a natural polymer derived from crabs, could penetrate deep into the nasal cavity and form a thin gel in the mucus lining, slowly releasing a controlled dose of the drug, which remains effective for treating schizophrenia symptoms over three days.

"The cornstarch nanoparticles we were using for an industrial application were the perfect vehicle," Hoare says. "They are naturally derived, they break down over time into simple sugars, and we need to do very little chemistry on them to make this technology work, so they are great candidates for biological uses like this."

The gradual release means patients would only need to take their medication every few days instead of every day or, in some cases, every few hours.
-end-
The research work was funded by a Collaborative Health Research Partnership Grant (from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research) and McMaster University's Interdisciplinary Research Fund.

The researchers are seeking a corporate partner to move the technology into the marketplace.

McMaster University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.