Conductive nature in crystal structures revealed at magnification of 10 million times

January 15, 2021

In groundbreaking materials research, a team led by University of Minnesota Professor K. Andre Mkhoyan has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows--transparency and conductivity.

The researchers are the first to observe metallic lines in a perovskite crystal. Perovskites abound in the Earth's center, and barium stannate (BaSnO3) is one such crystal. However, it has not been studied extensively for metallic properties because of the prevalence of more conductive materials on the planet like metals or semiconductors. The finding was made using advanced transmission electron microscopy (TEM), a technique that can form images with magnifications of up to 10 million.

The research is published in Science Advances, a peer-reviewed scientific journal published by the American Association for the Advancement of Science (AAAS).

"The conductive nature and preferential direction of these metallic line defects mean we can make a material that is transparent like glass and at the same time very nicely directionally conductive like a metal," said Mkhoyan, a TEM expert and the Ray D. and Mary T. Johnson/Mayon Plastics Chair in the Department of Chemical Engineering and Materials Science at the University of Minnesota's College of Science and Engineering. "This gives us the best of two worlds. We can make windows or new types of touch screens transparent and at the same time conductive. This is very exciting."

Defects, or imperfections, are common in crystals--and line defects (the most common among them is the dislocation) are a row of atoms that deviate from the normal order. Because dislocations have the same composition of elements as the host crystal, the changes in electronic band structure at the dislocation core, due to symmetry-reduction and strain, are often only slightly different than that of the host. The researchers needed to look outside the dislocations to find the metallic line defect, where defect composition and resulting atomic structure are vastly different.

"We easily spotted these line defects in the high-resolution scanning transmission electron microscopy images of these BaSnO3 thin films because of their unique atomic configuration and we only saw them in the plan view," said Hwanhui Yun, a graduate student in the Department of Chemical Engineering and Materials Science and a lead author of the study.

For this study, BaSnO3 films were grown by molecular beam epitaxy (MBE)--a technique to fabricate high-quality crystals--in a lab at the University of Minnesota Twin Cities. Metallic line defects observed in these BaSnO3 films propagate along film growth direction, which means researchers can potentially control how or where line defects appear--and potentially engineer them as needed in touchscreens, smart windows, and other future technologies that demand a combination of transparency and conductivity.

"We had to be creative to grow high-quality BaSnO3 thin films using MBE. It was exciting when these new line defects came into light in the microscope," said Bharat Jalan, associate professor and Shell Chair in the Department of Chemical Engineering and Materials Science, who heads up the lab that grows a variety of perovskite oxide films by MBE.

Perovskite crystals (ABX3) contain three elements in the unit cell. This gives it freedom for structural alterations such as composition and crystal symmetry, and the ability to host a variety of defects. Because of different coordination and bonding angles of the atoms in the line defect core, new electronic states are introduced and the electronic band structure is modified locally in such a dramatic way that it turns the line defect into metal.

"It was fascinating how theory and experiment agreed with each other here," said Turan Birol, assistant professor in the Department of Chemical Engineering and Materials Science and an expert in density functional theory (DFT). "We could verify the experimental observations of the atomic structure and electronic properties of this line defect with first principles DFT calculations."
-end-
Members of the research team include University of Minnesota Ph.D. students and postdoctoral fellows Hwanhui Yun, Mehmet Topsakal (now associate scientist at Brookhaven National Laboratory), and Abhinav Prakash (postdoc researcher Argonne National Laboratory); and University of Minnesota faculty members K. Andre Mkhoyan, Bharat Jalan, Turan Birol, and Jong Seok Jeong.

This research was supported in part by SMART, one of seven centers of nCORE, a Semiconductor Research Corporation program, sponsored by National Institute of Standards and Technology, and by the National Science Foundation (NSF) through the University of Minnesota Materials Research Science and Engineering Center (MRSEC). The team also worked with the University of Minnesota Characterization Facility. The MBE growth work was supported partially by the NSF and the Air Force Office of Scientific Research.

University of Minnesota

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.