Dangerous wheat disease jumps Red Sea

January 16, 2007

EL BATAN, Mexico and ALEPPO, Syria, -- 16 Jan 2007 -- A new form of stem rust, a virulent wheat disease, has jumped from eastern Africa and is now infecting wheat in Yemen in the Arabian Peninsula.

Researchers with the Global Rust Initiative (GRI) and the Agricultural Research Service of the United States Department of Agriculture (USDA-ARS) have confirmed conclusively the existence of the disease in Yemen. There is also evidence that the disease has spread into Sudan but more tests are needed to confirm the finding. Until this discovery, this new strain of stem rust, known as Ug99, had only been seen in Uganda, Kenya and Ethiopia.

The last major epidemic of stem rust occurred in North America in the early 1950s, when a strain of stem rust destroyed as much as 40 percent of the continent's spring wheat crop. Out of this crisis came a new form of international cooperation among wheat scientists worldwide, spearheaded by Nobel laureate wheat scientist Norman Borlaug. This international alliance of scientists led to the development of wheat varieties which resisted the onslaught of stem rust for more than four decades. But in 1999, a new strain of stem rust was discovered in Uganda and Kenya capable of destroying most previously disease-resistant wheat varieties.

A year and a half ago geographic information systems specialists working at CIMMYT plotted the probable trajectory of the fungus, whose spores can travel large distances on the wind. The wind models predicted that if the fungus crossed from eastern Africa to the Arabian Peninsula it could easily spread to the vast wheat-growing areas of North Africa, the Middle East, Pakistan and India.

There is precedence for this, from a virulent strain of another wheat disease, called yellow rust, which emerged in eastern Africa in the late 1980s. Once it appeared in Yemen, it took just four years to reach wheat fields of South Asia. On its way, this new strain of yellow rust caused major wheat losses in Egypt, Syria, Turkey, Iran, Iraq, Afghanistan, and Pakistan, exceeding USD 1 billion in value. There is every reason to believe the new Ug99 strain of stem rust represents a much greater risk to world wheat production. Annual losses of as much as USD 3 billion in Africa, the Middle East and south Asia alone are possible.

According to the Food and Agriculture Organization of the United Nations (FAO), countries in the predicted, immediate pathway grow more than 65 million hectares of wheat, accounting for 25 percent of the global wheat harvest. "If we don't control this stem rust threat," says ME Tusneem, Chairman of Pakistan's Agriculture Research Council, "it will have a major impact on food security, especially since global wheat stocks are at a historic low."

Experiments conducted over the past two years by international researchers in the Global Rust Initiative in Kenya and Ethiopia demonstrate clearly that most of the world's wheat varieties are susceptible to the new Ug99 strain of stem rust. "This is a problem that goes far beyond wheat production in developing countries," warns Borlaug. "The rust pathogen needs no passport to cross national boundaries. Sooner or later Ug99 will be found throughout the world, including in North America, Europe, Australia and South America."

GRI scientists have already identified promising experimental wheat materials with resistance to Ug99. But from the first breeding trials to growing new, rust-resistant varieties in farmers' fields on millions of hectares takes time and a massive effort.

"If we fail to contain Ug99 it could bring calamity to tens of millions of farmers and hundreds of millions of consumers," says Nobel Laureate Borlaug. "We know what to do and how to do it. All we need are the financial resources, scientific cooperation and political will to contain this threat to world food security."
-end-
For more information or to arrange interviews please contact:

r.w.ward@cgiar.org
Suren Varma
Head, Communications
ICARDA
Tel: 963 21 221-3433
Cell: 963 94 517251
s.varma@cgiar.org

Sean Adams
Office of Communications
USDA-ARS
Tel: 1 301 504-1622
Sean.Adams@ars.usda.gov

International Maize and Wheat Improvement Center (CIMMYT)

Related Agriculture Articles from Brightsurf:

Post-pandemic brave new world of agriculture
Recent events have shown how vulnerable the meat processing industry is to COVID-19.

Agriculture - a climate villain? Maybe not!
The UN's Intergovernmental Panel on Climate Change (IPCC) claims that agriculture is one of the main sources of greenhouse gases, and is thus by many observers considered as a climate villain.

Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.

Comparisons of organic and conventional agriculture need to be better, say researchers
The environmental effects of agriculture and food are hotly debated.

EU agriculture not viable for the future
The current reform proposals of the EU Commission on the Common Agricultural Policy (CAP) are unlikely to improve environmental protection, say researchers led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Göttingen in the journal Science.

Global agriculture: Impending threats to biodiversity
A new study compares the effects of expansion vs. intensification of cropland use on global agricultural markets and biodiversity, and finds that the expansion strategy poses a particularly serious threat to biodiversity in the tropics.

A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.

New pathways for sustainable agriculture
Diversity beats monotony: a colourful patchwork of small, differently used plots can bring advantages to agriculture and nature.

The future of agriculture is computerized
Researchers at the MIT Media Lab Open Agriculture Initiative have used computer algorithms to determine the optimal growing conditions to improve basil plants' taste by maximizing the concentration of flavorful molecules known as volatile compounds.

When yesterday's agriculture feeds today's water pollution
Water quality is threatened by a long history of fertilizer use on land, Canadian scientists find.

Read More: Agriculture News and Agriculture Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.