Nav: Home

Dressing a metal in various colors

January 16, 2017

DGIST announced that Professor Kyung-in Jang's research team succeeded in developing a technology that can control various color changes by coating several nanometers of semiconducting materials on a metal substrate through joint research with a research team led by professor Young-min Song of GIST.

Professor Kyung-in Jang's research team has succeeded in changing the unique color of metals such as gold, silver, aluminum, etc. with strong thin-film interference effect caused by light reflected on the surface of the metals and semiconducting materials by coating an ultra-thin layer of several nanometers (1 nanometer is one one-billionth of a meter) of semiconductor substances on the metals.

There have been previous studies that show that color changes depend on the thickness of ultra-thin film of semiconducting materials such as germanium coated on a gold substrate; however, there have been some difficulties due to the rapid change of colors and with color darkening techniques.

The research team coated a thin germanium film of 5 to 25 nanometers on a gold substrate by utilizing oblique angle deposition (OAD). As a result, they succeeded in producing various colors such as yellow, orange, blue, and purple at will according to the thickness and deposition angle of the germanium coating.

It was confirmed that the range of color expression expanded and the purity of color was enhanced by making a porous structure with a large number of fine holes that have a significant presence in the germanium layer. By applying the oblique angle deposition method, the variation and purity of colors were also varied according to the thickness change of the germanium film in nanometers.

Professor Kyung-in Jang from DGIST's Department of Robotics Engineering said, "The result of this research is the development of a simple method of applying various colors to existing electronic devices and currently we have succeeded in expressing single colors, but we may also be able to coat patterns such as symbols and pictures. In the future, I think it can be used in coating visual designs on flexible devices such as solar cells, wearable devices, and displays that are used for various purposes including building exterior walls. It can also be applied in camouflage by coating things with the same pattern or color as the surrounding objects."

Meanwhile, this research outcome was published on December 9, 2016 in the online edition of Nanoscale, an international academic journal in the field of nanotechnology, and the research was supported by the basic research project (collective research) of the National Research Foundation of Korea.
-end-
Journal Reference

Kyung-In Jang, Young-Min Song, et. al., "Ultra-thin Films with Highly Absorbent Porous Media Fine-tunable for Coloration and Enhanced Color Purity," Nanoscale 2016.

DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Related Solar Cells Articles:

Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
New properties of perovskite solar cells
Perovskite solar cells are lighter and cheaper than silicon, their production is non-toxic.
Making solar cells is like buttering bread
Formamidinium lead iodide is a very good material for photovoltaic cells, but getting the correct and stable crystal structure is a challenge.
More Solar Cells News and Solar Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.