Nav: Home

Protein identified by Mass. General team may protect tumor-initiating breast cancer cells

January 16, 2017

Massachusetts General Hospital investigators have identified a protein that may play an essential role in maintaining a population of tumor-initiating cells (TICs) -- treatment-resistant cells responsible for cancer recurrence and metastasis -- in breast cancer, as well as a compound that appears to reduce the molecule's ability to protect TICs from the effects of chemotherapy. Results of the team's study are being published online in PNAS.

"The protein we have identified -- G3BP2 -- affects the survival and proliferative potential of breast cancer cells by regulating the ratio of TICs to non-TICs within a tumor," says Igor Garkavtsev, MD, PhD, of the Steele Laboratories of Tumor Biology in the MGH Radiation Oncology Department, who led the study. "We also found that G3BP2 regulates breast tumor initiation in a way that leads to the increased expression of Oct-4 and Nanog, transcription factors contributing to the pluripotency of embryonic stem cells."

Breast cancers are made up of many different cell types, and it is believed that TICs, while making up a very small proportion of tumors, are capable of generating the full range of cancer cells. TICs may be present in most types of cancer; and since they seem to resist common therapies, finding ways to directly target TICs -- which requires better understanding of the mechanisms by which they are generated and maintained -- could significantly improve cancer treatment.

The MGH team began by treated a metastatic breast cancer cell line, which would be expected to contain a significant proportion of TICs, with combinations of the chemotherapy drug paclitaxel and compounds from a library of more than 60,000 diverse small molecules. From those compounds that increased the ability of paclitaxel to reduce the survival of cancer cells, they identified the one with the most pronounced effect, which they called compound C108.

Testing that compound in a different line of TIC-enriched breast cancer cells not only confirmed its ability to increase the toxic effect of paclitaxel but also showed that compound C108 alone could reduce the proportion of TICs in a population of cells. After implantation into mice, breast cancer cells that had been treated with compound C108 were observed to have an approximately 10-fold reduction in the proportion of TICs, compared with implanted cells that had been treated with an inert compound.

Further experiments showed that compound C108 exerts its effect through G3BP2, a protein found in cellular structures called stress granules, which are formed to protect RNA molecules from stresses such as oxygen deprivation or toxins - including chemotherapy drugs. Screening genetic samples from more than 4,000 breast cancer patients revealed that those with higher levels of G3BP2 expression had significantly worse outcomes, with increased tumor recurrence and metastasis.

More detailed analysis revealed that G3BP2 regulates breast tumor initiation by controlling the levels of TICs within tumors. The protein exert its effects by stabilizing the mRNA of SART3 -- a protein that plays a role in the pluripotency, the ability to give rise to any type of cell, of embryonic stem cells -- leading to increased expression of pluripotency factors Oct-4 and Nanog.

"The possibility that some breast cancer cells with vast proliferative potential may be intrinsically resistant to standard therapies may partially explain why tumors relapse after treatment," says Garkavtsev, who is an assistant professor of Radiation Oncology at Harvard Medical School. "Our identification of compound C108 and the discovery of G3BP2 as a potential regulator of TICs open opportunities for further exploration of the mechanisms of breast cancer initiation and the development of novel therapies. Combining derivatives of compound C108 with standard treatments could benefit patients with relapsed, drug-resistant or metastatic breast cancer and improve their survival."
-end-
The co-lead authors of the PNAS paper are Nisha Gupta and Mark Badeaux of the Steele Labs and Yiqian Liu of Jiangsu Province Hospital in Nanjing, China. Additional co-authors are Kamila Naxerova, PhD, Lance L. Munn, PhD, and Rakesh K. Jain, PhD, of the Steele Labs; and Dennis Sgroi, MD, of the MGH Department of Pathlogy. Support for the study includes National Institutes of Health grant R21CA169616, a grant from the Federal Share Proton Beam Program, SPARC and a Department of Defense Breast Cancer Research Innovator Award.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Breast Cancer Articles:

Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
Surgery to remove unaffected breast in early breast cancer increases
The proportion of women in the United States undergoing surgery for early-stage breast cancer who have preventive mastectomy to remove the unaffected breast increased significantly in recent years, particularly among younger women, and varied substantially across states.
Breast cancer patients with dense breast tissue more likely to develop contralateral disease
Breast cancer patients with dense breast tissue have almost a two-fold increased risk of developing disease in the contralateral breast, according to new research from The University of Texas MD Anderson Cancer.
Some early breast cancer patients benefit more from breast conservation than from mastectomy
Breast conserving therapy (BCT) is better than mastectomy for patients with some types of early breast cancer, according to results from the largest study to date, presented at ECC2017.
One-third of breast cancer patients not getting appropriate breast imaging follow-up exam
An annual mammogram is recommended after treatment for breast cancer, but nearly one-third of women diagnosed with breast cancer aren't receiving this follow-up exam, according to new findings presented at the 2016 Annual Clinical Congress of the American College of Surgeons.
Low breast density worsens prognosis in breast cancer
Even though dense breast tissue is a risk factor for breast cancer, very low mammographic breast density is associated with a worse prognosis in breast cancer patients.
Is breast conserving therapy or mastectomy better for early breast cancer?
Young women with early breast cancer face a difficult choice about whether to opt for a mastectomy or breast conserving therapy (BCT).
Breast density and outcomes of supplemental breast cancer screening
In a study appearing in the April 26 issue of JAMA, Elizabeth A.
Full dose radiotherapy to whole breast may not be needed in early breast cancer
Five years after breast-conserving surgery, radiotherapy focused around the tumor bed is as good at preventing recurrence as irradiating the whole breast, with fewer side effects, researchers from the UK have found in the large IMPORT LOW trial.

Related Breast Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.