Nav: Home

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water -- less than one-thousandth of a percent. Yet because of its position at the interface between the land and the atmosphere, that tiny amount plays a crucial role in everything from agriculture to weather and climate, and even the spread of disease.

The behavior and dynamics of this reservoir of moisture have been very hard to quantify and analyze, however, because measurements have been slow and laborious to make.

That situation changed with the launch in 2015 of a NASA satellite called SMAP (Soil Moisture Active Passive), designed to provide globally comprehensive and frequent measurements of the moisture in that top layer of soil. SMAP's first year of observational data has now been analyzed and is providing some significant surprises that will help in the modeling of climate, forecasting of weather, and monitoring of agriculture around the world.

These new results are reported in the journal Nature Geosciences, in a paper by SMAP Science Team leader Dara Entekhabi, recent MIT graduate Kaighin McColl PhD '16, and four others. Entekhabi is a professor in the Ralph M. Parsons Laboratory for Environmental Science and Engineering in MIT's Department of Civil and Environmental Engineering.

The SMAP observations are providing an unprecedented level of detailed, worldwide information on the amount of water in those top 2 inches (5 centimeters) of soil, collected globally every two to three days. Entekhabi says this is important because this thin layer is a key part of the global water cycle over the continents, and also a key factor in the global energy and carbon cycles.

Precipitation on land, and the evaporation of that moisture from the land, "transfers large amounts of energy" between the continents and the atmosphere, Entekhabi says, and the Earth's climate would be drastically different without this element. The oceans, containing 97 percent of Earth's water, provide a major role in storing and releasing heat, but over land that role is provided by the moisture in the topmost layer of the soil, albeit through different mechanisms. That moisture "is a tiny, tiny fraction of the water budget, but it's sitting at a very critical zone at the surface of the land, and plays a disproportionately critical role in the cycling of water," he says. "It plays a significant role in moderating climate, on seasonal and annual timescales."

Understanding these cycles better, thanks to the new data, could help make weather predictions more accurate over longer timescales, which could be an important boon for agriculture. Several federal agencies have already begun using the SMAP data, Entekhabi says, for example, to help make forecasting of drought and flood conditions more accurate.

"The satellite is providing an extraordinary quality of surface soil moisture information that makes this analysis possible," he says. The satellite's primary mission of three years is about halfway over, he says, but the team is working on applying for an extended mission that could last as much as a decade.

One of the big surprises from the new data is that this top level of soil preserves a "memory" for weather anomalies, more so than had been predicted from theory and earlier, sparser measurements. Memory refers to the persistence of effects from unusually high or low amounts of rainfall. Contrary to most researchers' expectations, it turns out that these effects persist for a matter of days, rather than just a few hours. On average, about one-seventh of the amount of rain that falls is still present in that topmost layer of soil three days after it falls -- and this persistence is greatest in the driest regions.

The data also show a significant feedback effect that can amplify the effects of both droughts and floods, Entekhabi says. When moisture evaporates from wet soil, it cools the soil in the process, but when the soil gets too dry that cooling diminishes, which can lead to hotter weather and heat waves that extend and deepen drought conditions. Such effects "had been speculated," he says, "but hadn't been observed directly."

The ongoing SMAP mission also provides educational opportunities that help to verify and calibrate the satellite data. With minimal equipment, students can participate in hands-on lessons in data collection, using measurement methods that are considered the gold standard. For example, they can gather a sample of soil in a fixed volume such as a tuna can, and weigh it before and after drying it out. The difference between the two weights gives a precise measure of the soil's moisture content in that volume, which can be compared with the satellite's moisture measurement.

Even young students "can carry out 'gold standard' measurements, and all it takes is a kitchen scale and an oven," Entekhabi says. "But it's very labor-intensive. So we have engaged with schools around the world to do these measurements."
-end-
The research team also included MIT postdocs Seyed Alemohammad and Ruzbeh Akbar, alumna Alexandra Konings PhD '15 (now at Stanford University), and Simon Yueh of the NASA Jet Propulsion Laboratory. The work was funded by NASA and the National Science Foundation.

Additional background

ARCHIVE: Study finds more extreme storms ahead for California http://news.mit.edu/2017/more-extreme-storms-ahead-california-0103

ARCHIVE: Dara Entekhabi named recipient of the 2015 Hydrologic Sciences Award http://news.mit.edu/2015/dara-entekhabi-agu-hydrologic-sciences-award-0924

ARCHIVE: First-light images from NASA's soil moisture satellite revealed http://news.mit.edu/2015/first-light-images-nasa-smap-revealed-0310

ARCHIVE: 3 Questions: Dara Entekhabi on NASA's soil-moisture mission http://news.mit.edu/2015/3-questions-dara-entekhabi-nasa-smap-satellite-0126

Massachusetts Institute of Technology

Related Agriculture Articles:

Urban agriculture only provides small environmental benefits in northeastern US
'Buy local' sounds like a great environmental slogan, epitomized for city dwellers by urban agriculture.
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Widely accepted vision for agriculture may be inaccurate, misleading
'Food production must double by 2050 to feed the world's growing population.' This truism has been repeated so often in recent years that it has become widely accepted among academics, policymakers and farmers, but now researchers are challenging this assertion and suggesting a new vision for the future of agriculture.
New effort to promote careers in agriculture, natural resources
A new round of grants from the USDA National Institute of Food and Agriculture is designed to promote careers in agriculture and natural resource management, and educators with the University of Tennessee Departments of Plant Sciences and Agricultural Leadership, Education, and Communications (ALEC) are among the grant recipients.
Corn yield modeling towards sustainable agriculture
Researchers use a 16 year field-experiment dataset to show the ability of a model to fine-tune optimal nitrogen fertilizer rates, and identify five ways it can inform nitrogen management guidelines.
Small-scale agriculture threatens the rainforest
An extensive study led by a researcher at Lund University in Sweden has mapped the effects of small farmers on the rain forests of Southeast Asia for the first time.
Space agriculture topic of symposium
New frontiers of soil and plant sciences may grow crops in space.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.
Invasive species could cause billions in damages to agriculture
Invasive insects and pathogens could be a multi-billion- dollar threat to global agriculture and developing countries may be the biggest target, according to a team of international researchers.
Males were saved by agriculture
The emergence of agriculture is suggested to have driven extensive human population growth.

Related Agriculture Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".