Nav: Home

Protein research: The computer as microscope

January 16, 2017

Using a combination of infrared spectroscopy and computer simulation, researchers at Ruhr-Universität Bochum (RUB) have gained new insights into the workings of protein switches. With high temporal and spatial resolution, they verified that a magnesium atom contributes significantly to switching the so-called G-proteins on and off.

G-proteins affect, for example, seeing, smelling, tasting and the regulation of blood pressure. They constitute the point of application for many drugs. "Consequently, understanding their workings in detail is not just a matter of academic interest," says Prof Dr Klaus Gerwert, Head of the Department of Biophysics. Together with his colleagues, namely Bochum-based private lecturer Dr Carsten Kötting and Daniel Mann, he published his findings in the Biophysical Journal. The journal features the subject matter as its cover story in the edition published on January 10, 2017.

G-proteins as source of disease

GTP can bind to all G-proteins. If an enzyme cleaves a phosphate group from the bound GTP, the G-protein is switched off. This so-called GTP hydrolysis takes place in the active centre of enzymes within seconds. If the process fails, severe diseases may be triggered, such as cancer, cholera or the rare McCune-Albright syndrome, which is characterised by, for example, abnormal bone metabolism.

Magnesium important for switch mechanism

In order for GTP hydrolysis to take place, a magnesium atom has to be present in the enzyme's active centre. The research team observed for the first time directly in what way the magnesium affects the geometry and charge distribution in its environment. After being switched off, the atom remains in the enzyme's binding pocket. To date, researchers had assumed that the magnesium leaves the pocket after the switching off process is completed.

The new findings have been gathered thanks to a method developed at the RUB Department of Biophysics. It allows to monitor enzymatic processes at a high temporal and spatial resolution in their natural state. The method in question is a special type of spectroscopy, namely the time-resolved Fourier Transform Infrared Spectroscopy. However, the data measured with its aid do not provide any information about the precise location in the enzyme where a process is taking place. The researchers gather this information through quantum-mechanical computer simulations of structural models. "Computer simulations are crucial for decoding the information hidden in the infrared spectra," explains Carsten Kötting. The computer, so to speak, becomes a microscope.

How proteins accelerate the switching off process

In the current study, the RUB biophysicists also demonstrated in what way the specialised protein environment affects the acceleration of GTP hydrolysis. They analysed the role of a lysine amino acid, which is located in the same spot in many G-proteins. It binds precisely that phosphate group of the GTP molecule from which a phosphate is separated when the G-protein is switched off.

"The function of lysine is to accelerate GTP hydrolysis by transferring negative charges from the third phosphate group to the second phosphate group," elaborates Daniel Mann. "This is a crucial starting point for the development of drugs for the treatment of cancer and other severe diseases in the long term."
-end-


Ruhr-University Bochum

Related Protein Articles:

Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
Put down the protein shake: Variety of protein better for health
University of Sydney researchers have examined whether there are any ongoing ramifications or potential side-effects from long-term high protein intake or from consuming certain types of amino acids.
Elucidating protein-protein interactions & designing small molecule inhibitors
To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI).
The protein with the starting gun
Whether dormant bacteria begin to reproduce is no accident. Rather, they are simply waiting for a clear signal from a single protein in the cell interior.
Protein moonlighting
A class of proteins involved in essential cell functions has an unexpected role, UCSB scientists discover.
Study says meat protein is unhealthy, but protein from nuts and seeds is heart smart
A study conducted by researchers in California and France has found that meat protein is associated with a sharp increased risk of heart disease while protein from nuts and seeds is beneficial for the human heart.
More Protein News and Protein Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.