Nav: Home

Presumed young star turns out to be a galactic senior citizen

January 16, 2017

49 Lib, a relatively bright star in the southern sky, is twelve billion years old rather than just 2.3 billion. For many decades, researchers were stumped by conflicting data pertaining to this celestial body, because they had estimated it as much younger than it really is. Determining its age anew, astronomers at Ruhr-Universität Bochum (RUB) have now successfully resolved all inconsistencies. Dr Klaus Fuhrmann and Prof Dr Rolf Chini published their results in the Astrophysical Journal.

"It had previously been assumed that the star was only half as old as our sun," says Chini. "However, our data have shown that it had been formed at the time that our galaxy was born." The reason for the error: the celestial object is a dual star system, as was proved by another research group in 2016. Chini's team has now demonstrated the mechanism used by the star partner of 49 Lib to fake its age.

Invisible star companion

The partner of 49 Lib is an almost extinguished star that is as good as invisible. At the end of its life, it had transferred a part of its matter to 49 Lib - this is what had made the estimation of age so confusing.

Scientists determine the age of stars based on their chemical composition. Old stars that had been formed during an early stage of the universe do not contain any heavy elements. This is because those elements were generated later, following the nuclear fusion of many generations of stars. Young stars such as our sun possess heavy elements, because they have emerged from the remnants of past generations of stars.

Giant at the close of its life

As the mysterious star 49 Lib contains heavy elements, researchers used to think for many decades that it is a relatively young celestial body. However, the team from Bochum has found out that the heavy elements did not originate on 49 Lib, but had been transferred to it from its invisible companion.

At the end of their life, stars become huge; so huge that their own gravity is no longer sufficient to keep the matter together. The matter escapes as gas into space. Should there be another star in its vicinity, its gravity might attract and absorb the expelled matter. This is how 49 Lib gained its heavy elements.

Determining the age of stars

Astronomers determine the age of stars based on their spectra. They break the light emitted by the star into its individual components and decode the wavelength at which the star emits most light. The composition of a star's chemical elements determines the spectrum.

Based on their data, the RUB researchers did more than just specify the age of the analysed star. "We are able to track this dual system's entire evolution," explains Rolf Chini. The astronomers know, for example, the masses with which the star's life had begun and how those masses have evolved since then.

From white dwarves to supernova

At first, both stars had similar mass properties as the sun. When 49 Lib took over a part of the matter of its extinguishing partner, it gained a weight of approximately 0.55 solar masses. The more mass a star, the shorter its lifespan. The weight gain has thus reduced 49 Lib's lifespan dramatically. "It will soon become a red giant and then collapse into a white dwarf," as Rolf Chini describes its fate.

As a red giant, 49 Lib will no longer be able to keep its matter together, undergoing the same process that its star partner underwent as it turned into a white dwarf. Part of the matter of 49 Lib will be attracted by its extinguishing star partner. "If that partner cannot rid itself of the matter in small eruptions, it will fully explode as a supernova," says Chini.
-end-


Ruhr-University Bochum

Related White Dwarf Articles:

Measuring the wind speed on a brown dwarf
Strong winds blow high in the atmosphere of the brown dwarf 2MASS J1047+21, according to a new study, which presents a simple method to deduce the windspeed in other brown dwarf atmospheres, too.
Astronomers measure wind speed on a brown dwarf
Using VLA and Spitzer observations, astronomers are able to determine wind speeds on a brown dwarf for the first time.
Observed: An occultation of a brown dwarf by another
An international team of astronomers in the project SPECULOOS, dedicated to the search for habitable planets, with scientists participating from the Instituto de Astrofísica de Canarias (IAC) has discovered an eclipse (termed an occultation) in a peculiar brown dwarf formed by two stars orbiting around each other.
Astronomers pinpoint rare binary brown dwarf
Astronomers working on 'first light' results from a newly commissioned telescope in Chile made a chance discovery that led to the identification of a rare eclipsing binary brown dwarf system.
Two stars merged to form massive white dwarf
A massive white dwarf star with a bizarre carbon-rich atmosphere could be two white dwarfs merged together according to an international team led by University of Warwick astronomers, and only narrowly avoided destruction.
Pulsar-white dwarf binary system confirms general relativistic frame-dragging
A century after it was first theorized, researchers have detected the effects of Lense-Thirring precession -- an effect of relativistic frame-dragging -- in the motion of a distant binary star system, a new study reports.
Math test score gap between white and non-white students in Brazil due to complex factors
School test scores often show gaps in performance between white and non-white students.
First giant planet around white dwarf found
Researchers using ESO's Very Large Telescope have, for the first time, found evidence of a giant planet associated with a white dwarf star.
Hidden giant planet revealed around tiny white dwarf star
The first evidence of a giant planet orbiting a dead white dwarf star has been found in the form of a disc of gas formed from its evaporating atmosphere.
Gravity crystals: A new method for exploring the physics of white dwarf stars
Grab a mixing bowl from your kitchen, throw in a handful of aluminum balls, apply some high voltage, and watch an elegant dance unfold where particles re-arrange themselves into a distinct 'crystal' pattern.
More White Dwarf News and White Dwarf Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.