Nav: Home

Theory lends transparency to how glass breaks

January 16, 2017

HOUSTON - (Jan. 17, 2017) - Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods based on a general theory of glasses to explain why.

A new paper in the Proceedings of the National Academy of Sciences by Rice physicist Peter Wolynes and former graduate student Apiwat Wisitsorasak lays a foundation to calculate how all types of glass morph over time when they are put under mechanical stress. Their formulas could help scientists and manufacturers make glass better for specific applications.

Metallic glasses are alloys that have a glass-like disordered structure rather than the polycrystalline structures of familiar metals. They can be both brittle and ductile to degrees and can be made into complex shapes, like the heads of golf clubs. Unlike window glass, they are conductive and may be useful for electronics.

Outwardly, glass may seem solid, but the random array of molecules inside is always moving, Wolynes said. It has been known for decades that when stressed, glasses will form shear bands, lines that localize the strain. Many ideas have been put forward about how this happens, but now the Rice group can explain the phenomenon using a general theory of how glasses form based on energy landscapes.

Wolynes has continued his long-running study of the molecular properties of glass at Rice's Center for Theoretical Biological Physics (CTBP), where he also develops the physics of energy landscapes for protein and DNA folding. His motivation for the new work was to see if the formation of shear bands could be explained through computations that describe how stress changes the rate of atomic rearrangement in the glass.

"My immediate interest is to show that this phenomenon of the shear bands, which is a noticeable thing in metallic materials, can be understood as part of the unified theory of glasses," he said. That theory, formed over decades by Wolynes and colleagues, describes many aspects of how glasses form when a liquid is cooled.

He said two factors prompt the formation of shear bands in metallic glasses. "One is that when glass is formed, it's a little weaker in some places than others. In that respect, the bands are partly programmed into the glass.

"The other factor is the element of randomness," he said. "All chemical reactions require concentrating energy in some particular mode of motion, but motion in glass is especially complex, so you have to wait around for an activating event to happen by chance. You need a sort of nucleation event."

These seemingly random "activation events," molecular couplings that happen naturally as a supercooled liquid flows, become rare when the glass settles into its shape but ramp up when the glass is stressed. The events trigger the cooperative movement of adjacent molecules and eventually result in shear bands.

The bands, the researchers wrote, mark regions of high mobility and where local crystallization can occur and show where the glass could ultimately fail.

Wolynes said the random first-order transition theory allows scientists to "say things about the statistics of these events, how big they are and the regions involved, without having to simulate a complete event using molecular dynamics simulation.

"This opens up the ability to do realistic calculations on the strength of glass and, certainly, metallic glasses. One could add the features of crystallization and fractures to the model as well, which would be of interest to materials scientists working on practical applications," he said.

Wolynes and Wisitsorasak tested their ideas on a two-dimensional computer model of Vitreloy 1, a metallic glass developed at the California Institute of Technology that "freezes" at its glass transition temperature of 661 degrees Fahrenheit.

The researchers placed the model under strain, collapsed the months required for a practical study into seconds and watched the material form shear bands precisely as seen by labs and in line with established theory, Wolynes said.

Computer models are the way to go for such studies, he said, because lab experiments can take months or years to bear fruit. "Our work sets the stage for a new way to model the mechanical properties of glassy materials that flow, as well as this weird phenomenon where the effect you see is macroscopic, but it's actually being caused by events on the nanoscale," he said.
-end-
Wisitsorasak, who earned his doctorate at Rice in 2014, is now a faculty member at King Mongkut's University of Technology Thonburi, Bangkok. Wolynes is the D.R. Bullard-Welch Foundation Professor of Science, a professor of chemistry, of biochemistry and cell biology, of physics and astronomy and of materials science and nanoengineering at Rice and a senior investigator of the National Science Foundation-funded CTBP.

The research was supported by the CTBP, the D.R. Bullard-Welch Chair at Rice and the government of Thailand through King Mongkut University of Technology and the Thailand Research Fund.

This news release can be found online at news.rice.edu

Follow Rice News and Media Relations via Twitter @RiceUNews

Video:

https://youtu.be/LmgZjMHWR6M

CAPTION: This movie illustrates a two-dimensional simulation by Rice University scientists of deformation fields in the Vitreloy 1 model under the applied strain rate of 0.01 1/s. The ambient temperature is 643 K. The upper plot shows the equivalent stress on the glass in unit of megapascals and the lower plot shows the fictive temperature (at which glass is effectively frozen) in Kelvin. Each plot is overlaid with the strain field. (Credit: Apiwat Wisitsorasak/ King Mongkut University of Technology)

Related materials:

Wolynes Research Lab: http://wolynes.rice.edu/node/129

Center for Theoretical Biological Physics: https://ctbp.rice.edu

Wiess School of Natural Sciences: http://natsci.rice.edu

Images for download:

http://news.rice.edu/files/2017/01/0116_GLASS-1-WEB-1afw08k.jpg

Predictions of various deformation fields in the Vitreloy 1 simulation created at Rice University at various stages of deformation and with an ambient temperature of 698 degrees Fahrenheit. Each plot shows the equivalent stress overlaid with the strain field. The color bar on the right of each plot shows the magnitude of the stress in units of megapascals. (Credit: Apiwat Wisitsorasak/ King Mongkut University of Technology)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"