Nav: Home

Scientists make plastic from pine trees

January 16, 2017

Most current plastics are made from oil, which is unsustainable. However, scientists from the Centre for Sustainable Chemical Technologies (CSCT) at the University of Bath have developed a renewable plastic from a chemical called pinene found in pine needles.

Pinene is the fragrant chemical from the terpene family that gives pine trees their distinctive "Christmas smell" and is a waste product from the paper industry.

The researchers hope the plastic could be used in a range of applications, including food packaging, plastic bags and even medical implants.

Degradable polyesters such as PLA (polylactic acid) are made from crops such as corn or sugar cane, but PLA can be mixed with a rubbery polymer called caprolactone to make it more flexible. Caprolactone is made from crude oil, and so the resulting plastic isn't totally renewable.

The researchers publishing their results in the journal Polymer Chemistry, used pinene as the raw material to make a new type of plastic that can be used in the place of caprolactone.

Helena Quilter, PhD student at the CSCT, explained: "We're not talking about recycling old Christmas trees into plastics, but rather using a waste product from industry that would otherwise be thrown away, and turning it into something useful.

"So if we can make a plastic from sustainable sources, it could make a big difference to the environment."

Professor Matthew Davidson, Director of the CSCT and Whorrod Professor of Sustainable Chemical Technologies, added: "This research is part of a wider project that looks at using bio-based chemicals like pinene as a sustainable starting material for making a range of useful products, in the place of petrochemicals. This reduces our reliance on fossil fuels and provides a renewable feedstock that has the potential to revolutionise the chemical industry."

The project, funded by the Engineering and Physical Sciences Research Council (EPSRC), is also investigating using other terpenes, such as limonene from citrus fruit, as a substitute for petrochemicals to make a range of products from plastics to pharmaceuticals.

The research is still at the early stages - only a few grams have been made so far - but the scientists aim to scale up the process to produce larger quantities in the near future.
-end-


University of Bath

Related Plastics Articles:

Turning car plastics into foams with coconut oil
End-of-life vehicles, with their plastic, metal and rubber components, are responsible for millions of tons of waste around the world each year.
Metal-ion catalysts and hydrogen peroxide could green up plastics production
Researchers at the University of Illinois are contributing to the development of more environmentally friendly catalysts for the production of plastic and resin precursors that are often derived from fossil fuels.
Researchers invent process to make sustainable rubber, plastics
Synthetic rubber and plastics -- used for manufacturing tires, toys and myriad other products -- are produced from butadiene, a molecule traditionally made from petroleum or natural gas.
Ridding the oceans of plastics by turning the waste into valuable fuel
Billions of pounds of plastic waste are littering the world's oceans.
Researchers use light to remotely control curvature of plastics
Researchers have developed a technique that uses light to get flat, plastic sheets to curve into spheres, tubes or bowls.
New use for paper industry's sludge and fly ash in plastics
VTT Technical Research Centre of Finland examined, as part of the EU's Reffibre project, whether new industrial applications could be developed for various types of sludge and fly ash generated by the paper and board industry.
New polymer additive could revolutionize plastics recycling
Only 2 percent of the 78 million tons of manufactured plastics are currently recycled into similar products because polyethylene (PE) and polypropylene (PP), which account for two-thirds of the world's plastics, have different chemical structures and cannot be efficiently repurposed together.
Dad's exposure to phthalates in plastics may affect embryonic development
A new study led by environmental health scientist Richard Pilsner at the University of Massachusetts Amherst, one of the first to investigate whether preconception exposures to phthalates in fathers has an effect on reproductive success via embryo quality, found that exposures from select chemicals tested were associated with 'a pronounced decrease in blastocyst quality' at an early stage in embryo development.
Cutting food waste, but tossing more packaging: Our plastics conundrum
These days, grocery stores contain aisle after aisle of products encased in plastic packaging.
Common plastics chemical BPA linked to preterm birth
Higher concentrations of the common plastics chemical and environmental pollutant Bisphenol A, or BPA, in a pregnant mother's blood may be a contributing factor in preterm births, according to a new study from the University of Texas Medical Branch at Galveston.

Related Plastics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".