Nav: Home

Three questions climate science must answer

January 16, 2017

The signing of the Paris agreement in 2015 may give the impression that the major questions concerning climate change have at last been answered and that climate science has met its challenges.

But a new Perspective article in Nature Climate Change today begs to differ, defining three key questions vital for society and calling for an international climate change research effort on par with the investment in the International particle physics laboratory, CERN. These questions are:
  • Where does the carbon go?

  • How does weather change with climate?

  • How does climate influence the habitability of the Earth and its regions?

Knowing human caused global warming is occurring is only the beginning of important climate research, according to the authors. Focusing climate science on these three questions tackles new frontiers of climate research and is the next logical step to serve society.

"Knowing that the globe is warming through human activity is like understanding that cancer is caused by runaway cell division. It is just the start of the challenge," said one of he authors of the article Prof Christian Jakob from the ARC Centre of Excellence for Climate System Science.

"While global mean temperature provides the canvas, the details of future changes will emerge at regional levels. It's at these levels that we will feel and need to adapt to the impact of climate change, economically and socially.

"To put it in a particularly Australian way, we don't plan for a bushfire season based on what is happening with global average temperatures, we look at temperature and humidity in our area instead."

Climate researchers and their models have been very good at determining the impacts of human caused global warming at global and continental levels. However, at regional and local levels -- such as the size of large capital cities -- there is still a long way to go.

The question of where the carbon goes is equally challenging. If we are to know in real time what is happening to the carbon in our atmosphere, how different parts of the system can take it up and to accurately determine the carbon emissions of each country, there needs to be a concerted, international effort.

Achieving the ambitious goals the article sets out, will require a quantum leap in our understanding and our ability to observe and compute the climate. Enormous computing power is required to capture the detailed processes that go into the formation of clouds, the impact of landforms and vegetation and a host of other climate processes that occur at regional levels.

Good quality and long-term observations both globally and in many parts of the world are needed to unravel the key process interactions involved in determining regional climates.

"Until we focus on regional phenomena, in a place like Australia we may struggle to know exactly how rainfall, heatwaves and sea-level rise will change in different parts of our country, especially our cities," said co-author Dr Sarah Perkins-Kirkpatrick.

"We need to reveal these impacts so we can protect regional agriculture, infrastructure and the Australian environments we have all come to know and love -- such as the Great Barrier Reef."

To overcome the lack of regional understanding, the authors are calling for new and enhanced internationally co-ordinated research efforts supported by large computational infrastructure, much like the International particle physics laboratory CERN.

"Better information and understanding at a regional level will allow each country to respond effectively and economically, which is vital to our future prosperity," said Prof Jakob.

"The job for climate science is far from done. We are one of the most collaborative international fields of science and our future lies in strengthening this collaboration through flagship projects that tackle the most urgent questions. Society depends on the basic science we do. Answering the three questions will allow us to be ready for the challenges and surprises ahead."
-end-


University of New South Wales

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.