Nav: Home

New study reveals the structure of DNA helicase at the replication fork

January 16, 2017

GRAND RAPIDS, Mich. (Jan. 16, 2017)--Scientists at Van Andel Research Institute and Rockefeller University have successfully described a crucial structure involved in DNA replication, placing another piece in the puzzle of how life propagates.

The latest study from long-time collaborators Huilin Li, Ph.D., and Michael O'Donnell, Ph.D., published today in the Proceedings of the National Academy of Sciences, elucidates the interaction between DNA and the eukaryotic enzyme CMG helicase, which opens the DNA double helix like the slider of a zipper and prepares the genetic code for copying.

"Since discovery of the DNA double helix more than 50 years ago, helicase's activity in preparing DNA for replication has been poorly understood," says Li, professor at Van Andel Research Institute. "However, recent advances in microscopy and study design allow us to create accurate images of these enzymes and observe their interactions with DNA for the first time."

More than 40 diseases, including many cancers, anemias and ataxias, in addition to several rare and orphan disorders, trace their origins at least partially to inaccuracy or failures in DNA replication. Results of this study offer a schematic for a core driver behind DNA replication, which Li and O'Donnell hope will eventually help the development of new treatments for these diseases.

"Biologists have learned a great deal about the molecular structure and functions of the enzymes and proteins related to DNA replication," says O'Donnell, professor at Rockefeller University and Howard Hughes Medical Institute investigator. "However, we still have much to discover, and this understanding of helicase activity brings us another step closer."

Findings from the new study reverse a long-held assumption about the orientation of helicase around DNA. Images taken during DNA unwinding demonstrate that helicase's N-tier ring leads the C-tier motor ring and makes first contact with double-stranded DNA. Such orientation is opposite from the currently accepted polarity and has important implications in understanding the mechanism of replication.

Helicase activity has long been recognized as a critical part of DNA replication, itself a fundamental process in the propagation of life. With the publication of this study, scientists have a more complete picture of how most advanced life on Earth proliferates.

This study involved evaluation of CMG helicase purified from the baker's yeast Saccharomyces cerevisiae, an organism commonly used to model higher eukaryotes, including humans.

The structure of the helicase on DNA was derived at Rockefeller University's cryo-electron microscopy (cryo-EM) core facility, leveraging a groundbreaking imaging technology that has revolutionized scientists' ability to visualize and understand the role of fundamental biological processes.

With VARI's recent installation of its own world-class Cryo-EM Core, including the powerful Titan Krios, Li expects the pace of discovery and understanding of these basic biological processes will accelerate in Grand Rapids.
-end-
Study authors include Roxana Georgescu, Dan Zhang, Olga Yurieva, and Michael O'Donnell, all of Rockefeller University and Howard Hughes Medical Institute; Lin Bai and Huilin Li, of Van Andel Research Institute; Zuanning Yuan and Ruda de Luna Almeida Santos of Stony Brook University; and Jingchuan Sun, of University of Pennsylvania. Yuan and de Luna Almeida Santos also are affiliated with VARI.

Funding for the study came from Van Andel Research Institute, Howard Hughes Medical Institute and the National Institute of General Medical Sciences of the National Institutes of Health under Award Number GM111742. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About Van Andel Institute

Van Andel Institute (VAI) is an independent nonprofit biomedical research and science education organization committed to improving the health and enhancing the lives of current and future generations. Established by Jay and Betty Van Andel in 1996 in Grand Rapids, Michigan, VAI has grown into a premier research and educational institution that supports the work of more than 360 scientists, educators and staff. Van Andel Research Institute (VARI), VAI's research division, is dedicated to determining the epigenetic, genetic, molecular and cellular origins of cancer, Parkinson's and other diseases and translating those findings into effective therapies. The Institute's scientists work in onsite laboratories and participate in collaborative partnerships that span the globe.

About The Rockefeller University

The Rockefeller University is the world's leading biomedical research university and is dedicated to conducting innovative, high-quality research to improve the understanding of life for the benefit of humanity. Our 79 laboratories conduct research in neuroscience, immunology, biochemistry, genomics, and many other areas, and a community of 1,800 faculty, students, postdocs, technicians, clinicians, and administrative personnel work on our 14-acre Manhattan campus. Our unique approach to science has led to some of the world's most revolutionary and transformative contributions to biology and medicine. During Rockefeller's 115-year history, 24 of our scientists have won Nobel Prizes, 21 have won Albert Lasker Medical Research Awards, and 20 have garnered the National Medal of Science, the highest science award given by the United States.

Van Andel Research Institute

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
New DNA synthesis technique promises rapid, high-fidelity DNA printing
Today, DNA is synthesized as an organic chemist would, using toxic chemicals and error-prone steps that limit accuracy and thus length to about 200 base pairs.
The changing shape of DNA
The shape of DNA can be changed with a range of triggers including copper and oxygen - according to new research from the University of East Anglia.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.