Nav: Home

Insulating with microscopic bubbles

January 16, 2018

The calculation is simple: the better a building is insulated, the less heat is lost in winter - and the less energy is needed to achieve a comfortable room temperature. No wonder, then, that the Swiss Federal Office of Energy (SFOE) regularly raises the requirements for building insulation.

Traditionally, the insulating layers are applied to the finished walls. Increasingly, however, self-insulating bricks are being used - saving both work steps and costs and opening up new architectural possibilities. Insulating bricks offer a workable compromise between mechanical and thermal properties and are also suited for multi-storey buildings. They are already available on the market in numerous models: some have multiple air-filled chambers, others have larger cavities filled with insulating materials such as pearlite, mineral wool or polystyrene. Their thermal conductivity values differ depending on the structure and filling material. In order to reach the in-sulation values of walls with seperate insulating layers, the insulating bricks are usually considerably thicker than normal bricks.

Aerogel instead of Perlite

Empa researchers have now replaced Perlite in insulating bricks with Aerogel: a highly porous solid with very high thermal insulation properties that can withstand temperatures of up to 300°C (see box). It is not an novel material for the researchers: they have already used it to develop a high-performance insulating plaster which, among other things, allows historical buildings to be reno-vated energetically without affecting their appearance. (Link to article)

Together with his colleagues, Empa researcher Jannis Wernery from the research department "Building Energy Materials and Components" has developed a paste-like mixture of aerogel particles to be used as filler material for the brick. "The material can easily be filled into the cavities and then joins with the clay of the bricks," says Wernery. "The aerogel stays in the bricks - you can work with them as usual." The "Aerobrick" was born.

A comparison in a special measuring device for thermal conductivity at an average temperature of 10°C shows that the perlite-filled bricks with the same structure and thickness insulate by about a third less than the aerobrick. In other words, in order to achieve the required insulation values, a wall of perlite brick must be about 35% thicker than an aerobrick wall.

Even more impressive is the comparison with ordinary brickwork made of non-insulating bricks: These conduct heat up to eight times better. A conventional wall would therefore have to be almost two metres deep in order to insulate as well as an aerobricks wall of just 20 centimetres in depth. With a measured thermal conductivity of just 59 milliwatts per square meter and Kelvin temperature difference, the Aerobrick is currently the best insulating brick in the world. But now and in the very near future, no one will probably be able to build a new house from aerobricks - the filling material is currently still too expensive. Wernery calculates that at today's market price for aerogel, a single square metre of a brick wall would generate additional costs of around 500 francs. However, experts assume that the costs for Aerogel will fall massively in the near to medium term - then nothing will stand in the way of the use of the new wonder brick.
-end-


Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related Thermal Conductivity Articles:

Topology-optimized thermal cloak-concentrator
Cloaking a concentrator in thermal conduction via topology optimization. A simultaneous cloaking and concentrating of heat flux is achieved through topology optimization, a computational structural design methodology.
Investigating a thermal challenge for MOFs
New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel.
Thermal manipulation of plasmons in atomically thin films
Nanoscale photothermal effects can induce substantial changes in the optical response experienced by the probing light, thus suggesting their applications in all-optical light modulation.
Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.
Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.
Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.
Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.
Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
Super-resolution at all scales with active thermal detection
IBS research team found the temperature increase caused by the probe beam could be utilized to generate a signal per se for detecting objects.
More Thermal Conductivity News and Thermal Conductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.