Nav: Home

Cryo-electron microscopy reveals shape of heterochromatin

January 16, 2018

Heterochromatin is a chromatin which efficiently regulates genes due to its dense packing of the DNA. Though how the structural basis of heterochromatin is formed became clearer in recent years, the actual structure remained unknown since imaging it was difficult because of its flexibility and microscopic size.

According to a recent study published in Molecular Cell, scientists from Waseda University, Okinawa Institute of Science and Technology and the National Institute for Basic Biology became the first to successfully visualize the structure of heterochromatin.

"We discovered that heterochromatin looks something like a wireless headphone," says Hitoshi Kurumizaka, professor of structural biology at Waseda University and leading scientist of this study. "Imaging heterochromatin became possible because of cryo-electron microscopy. Our study demonstrates Japan's international competitiveness in structural biology research using this technique."

The research group first reconstituted heterochromatin samples in vitro using a protein called heterochromatin protein 1 (HP1) and two nucleosomes linked together, which include histones mimicking a particular chemical modification (H3 lysine 9 tri-methylation). The samples were then purified for high-contrast imaging in cryo-electron microscopy, and from this image, the scientists found that heterochromatin is formed by HP1 binding with chromatin while bridging the nucleosomes positioned side by side.

Professor Kurumizaka points out that defining the heterochromatin structure could help better understand the mechanism of gene regulation and how certain kinds of diseases occur. "Damage to the heterochromatin structure is reported to increase chromatin abnormalities and cancer risks, and heterochromatin is closely associated with virus infections such as HIV. The results of this study could become valuable in developing treatment for such serious diseases."

In the future, the scientists hope to study even more complex, higher order structures, such as an entire string of nucleosomes, using the method established in this study.
-end-
Link to this study in the Waseda University News

Reference

Structural Basis of Heterochromatin Formation by Human HP1
Published in Molecular Cell
Authors: Shinichi Machida(1), Yoshimasa Takizawa(2), Masakazu Ishimaru(1), Yukihiko Sugita(2), Satoshi Sekine(1), Jun-ichi Nakayama(3), Matthias Wolf(1), Hitoshi Kurumizaka(1, 4)
(1)Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
(2)Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
(3)National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
(4)Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan

About Waseda University

Waseda University is a leading private, non-profit institution of higher education based in central Tokyo with over 50,000 students in 13 undergraduate and 20 graduate schools. Founded in 1882, Waseda cherishes three guiding principles: academic independence, practical innovation and the education of enlightened citizens. Established to mold future leaders, Waseda continues to fulfill this mission, counting among its alumni seven prime ministers and countless other politicians, business leaders, journalists, diplomats, scholars, scientists, actors, writers, athletes and artists. Waseda is number one in Japan in international activities, including number of incoming and outgoing study abroad students, with the broadest range of degree programs taught fully in English, and exchange partnerships with over 600 top institutions in 84 countries.

Waseda University

Related Chromatin Articles:

Allelic imbalance of chromatin openness is linked to neuropsychiatric disorders
New study finds single nucleotide polymorphisms (SNPs) affect chromatin accessibility, which in turn affects whether or not a gene can be expressed
FloChiP, a new tool optimizing gene-regulation studies
EPFL scientists have developed FloChip, a new microfluidic take on the widely used chromatin immunoprecipitation (ChIP) technique.
At the crossroads
In the bone marrow, blood stem cells via precursor cells give rise to a variety of blood cell types with various functions: white blood cells, red blood cells, or blood platelets.
Dock and harbor: A novel mechanism for controlling genes
In a recent study published in Molecular Cell, researchers at Kanazawa University report the role of cellular structures called PML bodies in regulating gene function.
Clinical implications of chromatin accessibility in human cancers
Volume 11, Issue 18 of @Oncotarget Clinical implications of chromatin accessibility assessed by ATAC-seq profiling in human cancers especially in a large patient cohort is largely unknown.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Opening up DNA to delete disease
Protein editorial assistants are clearing the way for cut-and-paste DNA editors, like CRISPR, to access previously inaccessible genes of interest.
Chromatin organizes itself into 3D 'forests' in single cells
Scientists are increasingly interested in the function of chromatin -- a mix of DNA and protein within chromosomes -- and its role in disease.
Unraveling gene expression
EPFL chemists have uncovered the first steps in the process of gene expression by showing how the protein Rap1 pries open the tightly wound, compacted structure of DNA in the cell to gain access to specific genes.
Argonaute proteins help fine-tune gene expression
A protein, with a name reminiscent of legendary Greek sailors, has an unexpected role inside the human nucleus.
More Chromatin News and Chromatin Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.