Nav: Home

An eNose is able to sniff out bacteria that cause soft tissue infections

January 16, 2018

A recent study conducted at the University of Tampere, Tampere University of Technology, Pirkanmaa Hospital District and Fimlab in Finland has concluded that an electronic nose (eNose) can be used to identify the most common bacteria causing soft tissue infections.

The eNose can be used to detect the bacteria without the prior preparation of samples, and the system was capable of differentiating methicillin-resistant Staphylococcus aureus (MRSA) from methicillin-sensitive Staphylococcus aureus (MSSA).

Skin and soft tissue infections are common diseases that need medical treatment. Their diagnosis is usually based on bacterial cultures, but in uncomplicated cases the diagnosis may be made directly based on the clinical presentation of the disease. However, this may lead to empirical antibiotic treatments, i.e. treatments without a specific diagnosis, which may result in longer treatment times, adverse effects and increased costs.

"Our aim was to create a method for the rapid diagnosis of soft tissue infections. If we had such a method, treatment could be started in a timely manner and targeted to the relevant pathogen directly. This would reduce the need for empirical treatments and shorten diagnostic delays," says doctoral researcher Taavi Saviauk from the Faculty of Medicine and Life Sciences at the University of Tampere.

"The portable eNose device we used does not require laboratory conditions or special training, so it is well suited for outpatient use. The results of this study are a significant step towards our goal," Saviauk continues.

An electronic nose is a device that produces "an olfactory profile" for each molecular compound in the air. The results are analysed by a computer and the system is programmed to differentiate between different compounds.

The research group conducting the study has previously shown how an eNose can be successfully used to differentiate prostate cancer from benign prostatic hyperplasia using a urine sample and distinguish between the various bacteria that cause urinary tract infections.
-end-
Saviauk T., Kiiski J.P., Nieminen M.K., Tamminen N.N., Roine A.N., Kumpulainen P.S., Hokkinen L.J., Karjalainen M.T., Vuento R.E., Aittoniemi J.J., Lehtimäki T.J., Oksala N.K:
Electronic Nose in the Detection of Wound Infection Bacteria from Bacterial Cultures: A Proof-of-Principle Study.
European Surgical Research 2018;59:1-11, https://doi.org/10.1159/000485461

For more information, please contact:

Doctoral researcher, MD, MSc (Tech), Taavi Saviauk
358 50 543 5789
taavi.saviauk@gmail.com

Associate Professor Niku Oksala
358-40-190-1487
niku.oksala@uta.fi

University of Tampere

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.