Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018

system, which enables these deadly skin cancers to grow and spread.

And while new therapies have been effective in releasing the immune system's restraints to unleash the body's own cancer-fighting powers, they only work in about half of melanoma patients and often lose their potency as the cancer develops resistance.

Now a research team at the Duke Cancer Institute has found a new way to keep the immune system engaged, and is planning to test the approach in a phase 1 clinical trial. The findings are reported online in the Jan. 16 issue of the journal Immunity.

"Understanding how cancers suppress the immune system is the key to identifying more effective immuno-therapies," said Brent Hanks, M.D., Ph.D., at Duke and senior author of the study. "Our research is an important step in that direction. We've identified a new mechanism of immunotherapy resistance that appears to be reversible, potentially enhancing the effect of the therapies we now have."

Hanks and colleagues, studying genetic mouse models of melanoma and verifying the findings in human specimens, focused on immune system messengers called dendritic cells. These cells are on high alert for pathogens such as viruses, bacteria and even tumor cells, signaling the body's T-cell immune fighters into action when sensing harmful invaders.

Somehow, melanomas reprogram dendritic cells so they ignore the cancer, but this process has not been well understood. In the current study, Hanks and colleagues identified a signaling pathway within the tumor microenvironment that melanomas manipulate to silence dendritic cells.

The pathway relies on a regulatory enzyme called IDO, which plays an important role in immune suppression and is controlled by fatty acid metabolism. Hanks's team found that this metabolic pathway is what melanomas compromise, setting in motion a cascade of events that ultimately leads to the immune system tolerating the tumor cells.

Once they identified this pathway, Hanks and colleagues conducted laboratory tests of a molecule that blocks melanoma cells from going stealth, enabling the immune system to mount a direct attack while also enhancing the function of current immunotherapies such as pembrolizumab and nivolumab.

"The IDO enzyme has been a focus of research in recent years, and there are several drugs that are being investigated to target it," Hanks said. "Our research looked at how we might influence the immune suppression function of IDO by targeting it upstream, along the metabolic pathway that controls it.

"We found that this pathway regulates not only IDO but also other important components of the immune system, suggesting that blocking this pathway may be superior to targeting IDO only," Hanks said.

Hanks said a phase 1 clinical study using an existing molecule that targets this newly identified pathway is in the planning stages. It would likely explore whether the investigational drug might boost the success of current immunotherapies.

"While there is understandable excitement around new therapies that enlist the immune system to fight cancer, we are still in a situation where greater than half of patients don't respond in melanoma and the response rate is even worse in other cancer types," Hanks said. "We need to figure out why that is, and figure out how to reverse it. We're hoping this research is a good step in that direction."
-end-
In addition to Hanks, study authors include Fei Zhao, Christine Xiao, Kathy S. Evans, Tbalamayooran Theivanthiran, Nicholas DeVito, Alisha Holtzhausen, Juan Liu, Xiaojing Liu, David Boczkowski, Smita Nair and Jason W. Locasale. Hanks is working with John Strickler, M.D., also with the Duke Cancer Institute, to extend these findings into the clinic.

The study received funding support from the Duke Cancer Institute and the National Cancer Institute, part of the National Institutes of Health (1K08CA191063-01A1

Duke University Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.