Nav: Home

Memory gene goes viral

January 16, 2018

Two independent teams of scientists from the University of Utah and the University of Massachusetts Medical School have discovered that a gene crucial for learning, called Arc, can send its genetic material from one neuron to another by employing a strategy commonly used by viruses. The studies, both published in Cell, unveil a new way that nervous system cells interact.

"This work is a great example of the importance of basic neuroscience research," said Edmund Talley, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. "What began as an effort to examine the behavior of a gene involved in memory and implicated in neurological disorders such as Alzheimer's disease has unexpectedly led to the discovery of an entirely new process, which neurons may use to send genetic information to one another."

While Arc is known to play a vital role in the brain's ability to store new information, little is known about precisely how it works. In addition, previous studies had detailed similarities between the Arc protein and proteins found in certain viruses like HIV, but it was unclear how those commonalities influenced the behavior of the Arc protein.

The University of Utah researchers began their examination of the Arc gene by introducing it into bacterial cells. To their surprise, when the cells made the Arc protein, it clumped together into a form that resembled a viral capsid, the shell that contains a virus' genetic information. The Arc "capsids" appeared to mirror viral capsids in their physical structure as well as their behavior and other properties.

"Beforehand, if I had said to any neuroscientist that this gene sort of acts like a virus, they would have laughed at me," said Jason Shepherd, Ph.D., an assistant professor at the University of Utah in Salt Lake City, Utah. "We knew this was going to take us in a completely new direction."

The University of Massachusetts scientists, led by Vivian Budnik, Ph.D., a professor at UMass Medical School, and Travis Thomson, Ph.D., an assistant professor at the institution, set out to scrutinize the contents of tiny sacks released by cells called extracellular vesicles. Their experiments in fruit flies revealed that motor neurons that control the flies' muscles release vesicles containing a high concentration of the Arc gene's messenger RNA (mRNA), the DNA-like intermediary molecule cells use to create the protein encoded by a DNA sequence. Both groups also found evidence that Arc capsids contain Arc mRNA and that the capsids are released from neurons inside those vesicles. In addition, Dr. Shepherd's team showed that the more active neurons are, the more of those vesicles they release.

Further experiments performed by both teams of researchers suggested that Arc capsids act like viruses by delivering mRNA to nearby cells. Dr. Shepherd and his colleagues grew mouse neurons lacking the Arc gene in petri dishes filled with Arc-containing vesicles or Arc capsids alone. They discovered that the formerly Arc-less neurons took in the vesicles and capsids and used the Arc mRNA contained within to produce the Arc protein themselves. Finally, just like neurons that naturally manufacture the Arc protein, those cells made more of it when their electrical activity increased.

The UMass researchers, meanwhile, showed that Arc mRNA and capsids travel only in a single direction between fly cells - from motor neurons to muscles - and that the Arc protein binds to a specific part of the Arc mRNA molecule called the untranslated region that is not used to make the Arc protein. They also found that flies lacking the Arc gene form fewer connections between their motor neurons. Moreover, while normal flies create more of these connections when their motor neurons are more active, flies without the Arc gene failed to do so.

Both groups of scientists now plan to investigate why cells use this virus-like strategy to shuttle Arc mRNA between cells and whether this system might allow the toxic proteins responsible for Alzheimer's disease to spread through the brain. Dr. Budnik hopes that such research will shed light on the development of neurological diseases and potentially lead to new therapies.

In addition, Dr. Shepherd believes it may be possible to use Arc capsids for genetic engineering and gene therapy, which currently use viruses to introduce new genetic instructions into cells. The human immune system sometimes attacks those viruses, causing dangerous side effects. Because the Arc protein is native to the human body, clinicians may be able to use Arc capsids to deliver genes for gene therapy without triggering an immune response.

"This research highlights the fact that we often don't know where the cool discoveries are going to come from," Dr. Shepherd said. "We need to follow where the science takes us."
-end-
Dr. Shepherd's work was supported by the NINDS (NS076364), the NIH's National Institute of Mental Health (MH112766), and the NIH's National Institute of General Medical Sciences (GM77582 and GM112972). Dr. Budnik's and Dr. Thomson's research was supported by the National Institute of Mental Health (MH070000).

References:

Pastuzyn et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell. January 11, 2018. doi: 10.1016/j.cell.2017.12.024.

Ashley et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell. January 11, 2018. doi: 10.1016/j.cell.2017.12.022.

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institute of Mental Health (NIMH): The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website.

The National Institute of General Medical Sciences (NIGMS) supports basic research that increases our understanding of biological processes and lays the foundation for advances in disease diagnosis, treatment, and prevention. For more information, visit the NIGMS website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH/National Institute of Neurological Disorders and Stroke

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.