Nav: Home

Weather anomalies accelerate the melting of sea ice

January 16, 2018

In the winter of 2015/16, something happened that had never before been seen on this scale: at the end of December, temperatures rose above zero degrees Celsius for several days in parts of the Arctic. Temperatures of up to eight degrees were registered north of Svalbard. Temperatures this high have not been recorded in the winter half of the year since the beginning of systematic measurements at the end of the 1970s. As a result of this unusual warmth, the sea ice began to melt.

"We heard about this from the media," says Heini Wernli, Professor of Atmospheric Dynamics at ETH Zurich. The news aroused his scientific curiosity, and a team led by his then doctoral student Hanin Binder investigated the issue. In November 2017, they published their analysis of this exceptional event in the journal Geophysical Research Letters.

In it, the researchers show how these unusual temperatures arose: three different air currents met over the North Sea between Scotland and southern Norway, carrying warm air northwards at high speed as though on a "highway".

One air current originated in the Sahara and brought near-surface warm air with it. To begin with, temperature of this air was about 20 degrees Celsius. While it cooled off on its way to the Arctic, it was still above zero when it arrived. "It's extremely rare for warm, near-surface subtropical air to be transported as far as the Arctic," says Binder.

The second air current originated in the Arctic itself, a fact that astonished the scientists. To begin with, this air was very cold. However, the air mass - which also lay close to the ground - moved towards the south along a curved path and, while above the Atlantic, was warmed significantly by the heatflux from the ocean before joining the subtropical air current.

The third warm air current started as a cold air mass in the upper troposphere, from an altitude above 5 kilometres. These air masses were carried from west to east and descended in a stationary high-pressure area over Scandinavia. Compression thereby warmed the originally cold air, before it entered the "highway to the Arctic".

Poleward warm air transport

This highway of air currents was made possible by a particular constellation of pressure systems over northern Europe. During the period in question, intense low-pressure systems developed over Iceland while an extremely stable high-pressure area formed over Scandinavia. This created a kind of funnel above the North Sea, between Scotland and southern Norway, which channelled the various air currents and steered them northwards to the Arctic.

This highway lasted approximately a week. The pressure systems then decayed and the Arctic returned to its typical frozen winter state. However, the warm period sufficed to reduce the thickness of the sea ice in parts of the Arctic by 30 centimetres - during a period in which ice usually becomes thicker and more widespread.

"These weather conditions and their effect on the sea ice were really exceptional," says Binder. The researchers were not able to identify a direct link to global warming. "We only carried out an analysis of a single event; we didn't research the long-term climate aspects" emphasises Binder.

High-pressure systems cause sea ice to melt

However, the melting of Arctic sea ice during summer is a different story. The long-term trend is clear: the minimum extent and thickness of the sea ice in late summer has been shrinking continually since the end of the 1970s. Sea ice melted particularly severely in 2007 and 2012 - a fact which climate researchers have thus far been unable to fully explain. Along with Lukas Papritz from the University of Bergen, Wernli investigated the causes of these outliers. Their study has just been published in the journal Nature Geoscience.

According to their research, the severe melting in the aforementioned years was caused by stable high-pressure systems that formed repeatedly throughout the summer months. Under these cloud-free weather conditions, the high level of direct sunlight - the sun shines 24 hours a day at this time of year - particularly intensified the melting of the sea ice.

Areas of low pressure "inject" air masses into the Arctic

These high-pressure systems developed through an influx of air from temperate latitudes. Low-pressure systems in the North Atlantic and North Pacific areas, for example, "inject" air masses into the Arctic at a height of about eight kilometres. This raised the height of the tropopause, the boundary between the troposphere and the stratosphere, in the region of the "injections". As a result, surface air pressure below rose and a high-pressure system was established. While it dissipated again around ten days later, an unusually high amount of sea ice melted in the interim, and the remaining ice thinned.

The climate scientists' investigation demonstrated that in the summers of 2007 and 2012, during which these high-pressure situations occurred particularly frequently, they led to cloud-free conditions every third day. The high level of solar radiation intensified and accelerated the melting of the sea ice. "The level of solar radiation is the main factor in the melting of the ice in summer. Unlike with the winter anomaly, the "injected" air at about 8 kilometre altitude from the south is not warm - with minus 60 degrees it's ice-cold," says Wernli.

"The air temperature therefore has very little effect on the ice." Furthermore, the northward transport of warm, humid air masses at the edge of the high-pressure systems reduces (heat) emission, which further intensifies melting.

Their analysis has allowed the researchers to understand the meteorological processes leading to significant variations in summertime ice melt for the first time. "Our results underline the fundamental role that weather systems in temperate latitudes play in episodes of particularly intense ice melt in the Arctic," says the ETH professor.
-end-


ETH Zurich

Related Sea Ice Articles:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.
Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.
How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.
A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.
Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.
Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.
Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.
Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.
More Sea Ice News and Sea Ice Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.