Nav: Home

Magnetically applied MicroRNAs could one day help relieve constipation

January 16, 2018

Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Both constipation and incontinence, although multifactorial, have also been associated with the problems related to the regulation of a ring of smooth muscle around the anal opening termed, the internal anal sphincter. Unlike the way we can clench muscles just by thinking about them, smooth muscle is a type of muscle that we can't control with our thoughts. Using a new technique to deliver gene-therapy-like intervention directly where it's needed, researchers at Thomas Jefferson University successfully increased or decreased the muscle tone of the anal sphincter in appropriate animal models. These studies could have implications in treating constipation or incontinence.

The article was published in the American Journal of Physiology-Gastrointestinal and Liver Physiology.

Dr. Satish Rattan, Professor in the Department of Medicine, Division of Gastroenterology and Hepatology at Jefferson's Sidney Kimmel Medical College, together with Drs. Jagmohan Singh and Ipsita Mohanty, used altered copies of the body's own genetic make-up - small RNA fragments (microRNAs) that regulate the target gene RhoA/ROCK - in order to strengthen or weaken the muscle tone of the sphincter. (Dr. Rattan's lab had shown earlier that changing RhoA/ROCK gene expression could alter smooth muscle tone.) But rather than simply inject the agent, where it could have spread through the tissue to affect other regions, the investigators kept the microRNAs localized to the ring of muscle. They did this by first injecting the microRNAs mixed with micro metal beads, and then kept them localized to the sphincter with a magnet. This innovative yet simple approach was more effective at keeping the microRNAs in the right place than injecting the microRNAs alone.

Because sphincters also help keep food in the stomach from rising up the esophagus, using a similar approach has additional implications in the lower esophageal sphincter where its localized stimulation could help prevent acid reflux in difficult-to-treat cases. First, however, the researchers will have to demonstrate whether the same principals hold true in humans, without side effects.
-end-
The authors report no conflicts of interest. The work was supported by the National Institutes of Health NIDDK Grant RO1DK035385

Article reference: J Singh, et al., "In vivo magnetofection: a novel approach for targeted 2 topical delivery of nucleic acids for rectoanal motility 3 disorders," Am J Physiol Gastrointest Liver Physiol, DOI:10.1152/ajpgi.00233.2017.

Thomas Jefferson University

Related Micrornas Articles:

Is the COVID-19 virus pathogenic because it depletes specific host microRNAs?
Why is the COVID-19 virus deadly, while many other coronaviruses just cause colds?
Intracellular biopsy technique for fast microRNAs profiling in living cells
MicroRNAs (miRNAs) are gaining more attention in researches. To achieve fast and highly sensitive profiling of miRNAs, a research team from City University of Hong Kong (CityU) has developed a novel high-throughput intracellular biopsy technique that isolates targeted miRNAs from living cells within around 10 minutes by using diamond nanoneedles.
The function of new microRNAs are identified in Salmonella and Shigella infections
The research, published in Nature Microbiology, could help the search for more effective medicine and delves deeper into understanding the role of microRNAs in gene expression.
Protecting damaged hearts with microRNAs
Once the heart is formed, its muscle cells have very limited ability to regenerate.
A role for microRNAs in social behavior
Researchers have uncovered a microRNA cluster that regulates synaptic strength and is involved in the control of social behavior in mammals.
Genomic study finds a new role for microRNAs as predictors of Crohn's disease progression
A new study led by UNC School of Medicine researchers and has found that a set of biomolecules known as microRNAs, specifically microRNA-31 (miR-31), can help predict which patients with Crohn's disease are at higher risk for the development of severe problems that may require surgical removal of the large intestine.
Treating inflammatory bowel disorder by delivering microRNAs
Osaka University researchers efficiently delivered miRNAs to immune response cells in inflamed intestinal tracts using a super carbonate apatite (sCA), which had been shown to be highly effective in the delivery of nucleic acids to solid tumors, demonstrating the efficacy of sCA in the prevention and treatment of colitis in mice.
New screening approach reveals importance of microRNAs in papillomavirus life cycle
The discovery of microRNAs encoded by papillomaviruses supports the important role of these small molecules in persistent infection, according to a study published July 26 in the open-access journal PLOS Pathogens.
Magnetically applied MicroRNAs could one day help relieve constipation
Micro metal beads and magnets help deliver a biologic where it's needed to improve constipation or rectoanal incontinence in animal models of the disorders.
Honeybees become workers or queens depending on the plant microRNAs in their diet
Bee larvae develop into workers, in part, because their diet of pollen and honey, called beebread, is rich in plant regulatory molecules called microRNAs, which delay development and keep their ovaries inactive.
More Micrornas News and Micrornas Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.