How manganese produces a parkinsonian syndrome

January 16, 2019

Using X-ray fluorescence at synchrotrons DESY and ESRF, researchers in the Centre d'Etudes Nucléaires de Bordeaux Gradignan (CNRS/Université de Bordeaux) have demonstrated the consequences of a mutation responsible for a hereditary parkinsonian syndrome: accumulated manganese in the cells appears to disturb protein transport. This work, carried out with colleagues at the University of Texas at Austin (USA), was published in the print issue of ACS Chemical Neuroscience on January 16, 2018.

Parkinsonian syndrome is a set of diseases with symptoms similar to Parkinson's disease. Some are caused by high quantities of manganese, a metal essential to the body at trace levels. This is especially so for a hereditary form of the disease caused by a genetic mutation responsible for a toxic accumulation of manganese in cells.

The team of researchers has shown a key mechanism for the disease caused by this mutation. At the DESY synchrotron (Hamburg, Germany), they have been able to locate manganese inside individual cells, (1) using the fluorescent signature it produces under an X-ray beam. Manganese concentrates essentially in the Golgi apparatus, a cellular compartment which acts as a dispatch center for proteins. The proteins receive a label and are accordingly packaged within vesicles to other compartments, or to the outside of the cell. It is in these vesicles--barely 50 nm in diameter--that manganese accumulates, as the researchers have demonstrated by repeating their experiments in the ESRF synchrotron (The European synchrotron, Grenoble), with even higher sensitivity and spatial resolution. This is the only place in the world where the equipment's spatial resolution and sensitivity were sufficient to detect the minute amounts of manganese in the vesicles.

The researchers think that this manganese accumulation disturbs protein export towards the outside of the cell, altering nerve cell function and leading to parkinsonian symptoms. This must still be confirmed by reproducing these experiments with neurons from animal models for this disease, which are being developed.
-end-
Notes: (1) HeLa cells, a widely used model in cell biology, from a tumor.

CNRS

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.