Nav: Home

Sudden aging

January 16, 2019

Coralline red algae have existed for 130 million years, in other words since the Cretaceous Period, the time of the dinosaurs. At least this was the established view of palaeontologists all over the world until now. However, this classification will now have to be revised after fossils discovered by researchers at GeoZentrum Nordbayern at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in conjunction with researchers at La Trobe University in Melbourne, Australia, prove that coralline red algae existed as far back as 430 million years ago.

The discovery made by FAU palaeontologists Dr. Sebastian Teichert, Prof. Dr. Axel Munnecke and their Australian colleague Dr. William Woelkerling has far-reaching consequences. 'Our finds mean that we must now look at the fossil record in a completely new way', explains Dr. Sebastian Teichert. Up to now, a higher age for coralline red algae was thought to be so unlikely that fossils found in layers of rock older than the Cretaceous Period were not even considered as coralline red algae simply due to their age. The fossil record comprises all documented occurrences of fossils and is the essential source of information about how life on Earth developed. A re-evaluation of the fossils in the record could help scientists to answer new questions regarding the development of coralline red algae.

Ecosystem engineers in the making

'The fact that coralline red algae occur so much earlier in the Earth's history sheds new light on several issues in ecology', says Teichert. Red algae play an extremely important role in the world's oceans today. For example, their calcareous skeletons ensure that coral reefs in the tropics remain stable and are even able to withstand heavy storms. In the Arctic, on the other hand, red algae take on the role of so-called ecosystem engineers. Their growth provides habitat for a large number of other organisms.

'It's still unclear why there is such a long period of time between the point when coralline red algae first occurred and the point when they became the ecosystem engineers they are today', says Teichert. 'It's possible that coralline red algae needed several million years to adapt from the time they first occurred before they were able to perform their current function in the ecosystem.'
-end-


University of Erlangen-Nuremberg

Related Fossils Articles:

Tiny fossils reveal backstory of the most mysterious amphibian alive
Researchers have determined that the fossils of an extinct species from the Triassic Period are the long-missing link that connects Kermit the Frog's amphibian brethren to wormlike creatures with a backbone and two rows of sharp teeth.
Moroccan fossils show human ancestors' diet of game
New fossil finds from the Jebel Irhoud archaeological site in Morocco do more than push back the origins of our species by 100,000 years.
South African cave yields yet more fossils of a newfound relative
Probing deeper into the South African cave system known as Rising Star, which last year yielded the largest cache of hominin fossils known to science, an international team of researchers has discovered another chamber with more remains of a newfound human relative, Homo naledi.
Research sheds new light on 'world's oldest animal fossils'
A team of researchers, led by the University of Bristol, has uncovered that ancient fossils, thought to be some of the world's earliest examples of animal remains, could in fact belong to other groups such as algae.
Viral fossils reveal how our ancestors may have eliminated an ancient infection
Scientists have uncovered how our ancestors may have wiped out an ancient retrovirus around 11 million years ago.
World's oldest plant-like fossils discovered
Scientists at the Swedish Museum of Natural History have found fossils of 1.6 billion-year-old probable red algae.
World's oldest fossils unearthed
Remains of microorganisms at least 3,770 million years old have been discovered by an international team led by UCL scientists, providing direct evidence of one of the oldest life forms on Earth.
New study gives weight to Darwin's theory of 'living fossils'
A team of researchers from the University of Bristol studying the 'living fossil' Sphenodon -- or tuatara -- have identified a new way to measure the evolutionary rate of these enigmatic creatures, giving credence to Darwin's theory of 'living fossils.'
Fossils found reveal unseen 'footprint' maker
Fossils found in Morocco from the long-extinct group of sea creatures called trilobites, including rarely seen soft-body parts, may be previously unseen animals that left distinctive fossil 'footprints' around the ancient supercontinent Gondwana.
The best way to include fossils in the 'tree of life'
A team of scientists from the University of Bristol has suggested that we need to use a fresh approach to analyze relationships in the fossil record to show how all living and extinct species are related in the 'tree of life.'

Related Fossils Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...