Hormone resistance in breast cancer linked to DNA 'rewiring'

January 16, 2020

Epigenetic changes occur in the DNA of breast cancer cells that have developed a resistance to hormone therapy, an effective treatment for ER+ breast cancer, which accounts for 70% of all diagnoses.

Reversing these changes, researchers say, has significant potential to help reduce breast cancer relapse.

A team led by Professor Susan Clark at the Garvan Institute of Medical Research showed that the 3D structure of DNA is 'rewired' in hormone resistant ER+ breast cancers, altering which genes are activated and which genes are silenced in the cells. The researchers published the findings today in the journal Nature Communications.

"For the first time, we've revealed crucial 3D DNA interactions that are linked to whether or not a breast cancer is sensitive to hormone therapy," says senior author Professor Clark, who is Garvan's Genomics and Epigenetics Research Theme Leader. "Understanding this process reveals new insights into how ER+ cancers evade hormone therapy, allowing them to grow uncontrolled."

Tackling hormone resistance in breast cancer


The sex hormone estrogen can be an inadvertent driver of cancer growth - ER+ breast cancers grow when estrogen 'docks' to their cells. Treatment that blocks estrogen, known as hormone therapy, is successful at stopping cancer growth and reducing relapse, however many breast cancers become resistant to the treatment over time.

"Treatment resistance is a significant health problem that leads to a third of all ER+ breast cancer patients on hormone therapy relapsing within 15 years," says the study's first author Dr Joanna Achinger-Kawecka.

"We are interested in epigenetic changes to DNA, the layer of instructions that organises and regulates DNA's activity, that underpin the development of hormone resistance in breast cancer. Understanding these fundamental changes may help guide development of future treatments that either prevent resistance from developing, or reverse it once it has occurred."

Uncovering hidden changes to DNA


Using chromosome conformation capture, a cutting-edge technique that provides a snapshot of how DNA is arranged and interacts in three dimensions in the cell, the researchers compared different ER+ breast cancer cells that were either sensitive or resistant to hormone treatment.

"Between breast cancer cells that were still sensitive to hormone treatment and those that had developed resistance, we saw significant changes in 3D interactions of DNA regions that control gene activation. Including at genes that control the estrogen receptor levels in the cells," says Dr Achinger-Kawecka.

"Further, we found that this 3D 'rewiring' occurred at DNA regions that were methylated, which is an epigenetic change that the team has already linked to hormone resistance."

The researchers say that the altered DNA methylation at critical regulatory regions may explain how the 3D structure of DNA is rewired as a cancer cell develops hormone resistance, allowing the cancer to better evade treatment.

A new path for breast cancer treatment


"Cancer cells are always trying to outsmart therapy and it only takes one cell to evolve a different way to bypass a drug to cause a relapse in cancer," says Professor Clark. "Our study shows us just how much impact a change in the epigenome can have on cancer cell behaviour."

The researchers say the next step is to investigate whether epigenetic changes could be reversed to stop hormone resistance, using existing drugs that are already in clinical trials for other cancers, including lung and colorectal cancer.

"Once ER+ breast cancer patients become resistant to hormone therapy, it is more difficult to treat," says Professor Clark. "We hope our research will help lead to combination treatments that allow women to take hormone therapy for longer, giving them better clinical outcomes."
-end-
This research was supported by the Kay Stubbs Cancer Council NSW, the Stand Up to Cancer - VARI Epigenetics Dream Team, the National Health and Medical Research Council and the National Breast Cancer Foundation.

Garvan Institute of Medical Research

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.