Making sense of the self

January 16, 2020

Boston, Mass. - Interoception is the awareness of our physiological states; it's how animals and humans know they're hungry or thirsty, and how they know when they've had enough to eat or drink. But precisely how the brain estimates the state of the body and reacts to it remains unclear. In a paper published in the journal Neuron, neuroscientists at Beth Israel Deaconess Medical Center (BIDMC) shed new light on the process, demonstrating that a region of the brain called the insular cortex orchestrates how signals from the body are interpreted and acted upon. The work represents the first steps toward understanding the neural basis of interoception, which could in turn allow researchers to address key questions in eating disorders, obesity, drug addiction, and a host of other diseases.

Using a mouse model his lab developed at BIDMC, Mark Andermann, PhD, principal investigator in the Division of Endocrinology, Diabetes and Metabolism at BIDMC and Associate Professor of Medicine at Harvard Medical School, and colleagues recorded the activity of hundreds of individual brain cells in the insular cortex to determine exactly what is happening as hungry animals ate.

The team observed that when mice hadn't eaten for many hours, the activity pattern of insular cortex neurons reflected current levels of hunger. As the mice ate, this pattern gradually shifted over hours to a new pattern reflecting satiety. When mice were shown a visual cue predicting impending availability of food - akin to a person seeing a food commercial or a restaurant logo - the insular cortex appeared to simulate the future sated state for a few seconds, and then returned to an activity pattern related to hunger. These findings provided direct support for studies in humans that hypothesized that the insular cortex is involved in imagining or predicting how we will feel after eating or drinking.

"It is as if the insular cortex is briefly estimating, or simulating, the physiological consequences of eating a meal," said first author Yoav Livneh, PhD, a postdoctoral research fellow in Andermann's lab. "When hungry, this would be a simulation of satiety. But when considering whether to eat in the absence of hunger, for example when eating dessert after a big meal, this would be a simulation of the consequences of overeating. We hypothesized in this paper that when insular cortex activity shifts from a pattern reflecting current bodily state to a pattern reflecting a future satiety state, the size of this shift actually predicts how rewarding it will be to eat the food."

A second experiment in which thirsty mice were presented with water yielded nearly identical results - with an important difference. The patterns of activity related to hunger and thirst were quite different, allowing the insular cortex to monitor multiple body states simultaneously.

"Another surprising finding was that insular cortex activity that reflects bodily state was independent of the hypothalamus, which is normally thought to be a master regulator of physiological need states in the brain," Andermann said. "In contrast, we found that even when we artificially activate hypothalamus in a way that compels sated mice to eat, insular cortex activity isn't fooled, and still reflects the body's current physiological state of satiety."

Next, Andermann and colleagues plan to directly manipulate specific patterns of activity in the insular cortex with the goal of changing the prediction the brain makes when presented with food or water, thereby making eating and drinking more or less rewarding.

"If successful, this approach might provide an intervention that could reduce seeking of unhealthy rewards (such as unhealthy foods or drugs of abuse) without affecting the seeking of other, healthier rewards," said Andermann. "Such an intervention could potentially have a lot of value in both medicine and psychiatry."
-end-
In addition to Andermann and Livneh, authors included Arthur U. Sugden, Joseph C. Madera, Rachel A Essner, Vanessa I Flores, Jon M. Resch and Bradford B. Lowell, all of BIDMC; and Lauren A. Sugden of Duquesne University.

This work was supported by The Charles A. King Trust Postdoctoral Fellowship; Boston Nutrition Obesity Research Center P&F 2P30DK046200-26; grants from the National Institutes of Health (K99 HL144923; T32 5T32DK007516; DP2 DK105570; R01 DK109930; DP1 AT010971; R01 DK075632; R01 DK096010; R01 DK089044; R01 DK111401; P03 DK046200; and P03 DK057521); grants from the National Science Foundation (DGE1745303); Klarman Family Foundation; McKnight Foundations; Smith Family Foundation; and Pew Scholars Program.

The authors declare no competing interests.

About Beth Israel Lahey Health

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

BIDMC is part of Beth Israel Lahey Health, a new health care system that brings together academic medical centers and teaching hospitals, community and specialty hospitals, more than 4,000 physicians and 35,000 employees in a shared mission to expand access to great care and advance the science and practice of medicine through groundbreaking research and education.

Beth Israel Deaconess Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.