Scientists uncover how an explosion of new genes explain the origin of land plants

January 16, 2020

The new study, led by scientists from the universities of Bristol and Essex and published today [16 January] in Current Biology, challenge the established view of the origin of plants on land, and reveal that compared to the origin of animals, plants are better at inventing new genes during periods of evolution.

Plants constitute one of the major lineages of life and are the basis of almost all ecosystems, being an important source of food and oxygen. During evolution, all organisms gain new genes, lose old ones, or simply recycle genes.

The research team set out to understand which changes, at the genetic level, took place during the evolutionary transition of plants by comparing over 200 genomes, one of the largest datasets ever assembled to tackle the evolution of the plant kingdom.

Using sophisticated computer techniques enabled the researchers to essentially travel back in time 470 million years ago to find out which genes were present in the first land-based plants as they evolved from living in water to land.

Dr Jordi Paps, Lecturer from Bristol's School of Biological Sciences and lead researcher, explained: "After comparing over 200 genomes of the plant kingdom, we discovered that the origin of land plants is associated with two explosions of new genes, an unprecedented level of genomic novelty. Our findings challenge previous views of this transition being more gradual at genetic level.

"The first burst predates the origin of land plants, before they left their aquatic environments, and comprises genes that explain why plants are multicellular. The second coincides with the origin of land plants, and involved genes related to adaptations to challenges found in terrestrial environments."

The team now plans to use the same approach to identify drought-resistant genes in crops.

Dr Paps added: "We now plan to use the same approach to further explore the genes involved in drought tolerance. Most crops are sensitive to drought conditions, using our methods we can find genes involved in drought resistance that we can potentially introduce in dessication-sensitive plants."
-end-
The study was funded by the BBSRC (Biotechnology and Biological Sciences Research Council) and the School of Life Sciences at the University of Essex.

Paper

'The origin of land plants is rooted in two bursts of genomic novelty' by Alexander M.C. Bowles, Ulrike Bechtold, and Jordi Paps in Current Biology

University of Bristol

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.