New model shows how crop rotation helps combat plant pests

January 16, 2020

A new computational model shows how different patterns of crop rotation--planting different crops at different times in the same field--can impact long-term yield when the crops are threatened by plant pathogens. Maria Bargués-Ribera and Chaitanya Gokhale of the Max Planck Institute for Evolutionary Biology in Germany present the model in PLOS Computational Biology.

The continual evolution of plant pathogens poses a threat to agriculture worldwide. Previous research has shown that crop rotation can help improve pest control and soil quality. Other research shows that switching the environment in which a pathogen grows can limit its reproduction and change its evolution. However, these two concepts have been rarely studied together from an evolutionary point of view.

To better understand how crop rotation can protect against pests, Bargués-Ribera and Gokhale developed a computational model of the technique that integrates evolutionary theory. They used the model to investigate a scenario in which cash crops (grown for profit) and cover crops (grown to benefit soil) are alternated, but are affected by a pathogen that only attacks the cash crops.

The analysis identified which patterns of crop rotation maximize crop yield over multiple decades under the given scenario, revealing that regular rotations that switch every other year may not be optimal. The findings suggest that the long-term outcome of crop rotation depends on its ability to both maintain soil quality and diminish pathogen load during harvesting seasons.

"Our model is an example of how evolutionary theory can complement farmers' knowledge," Bargués-Ribera says. "In a world with ever increasing food demand, ecological and evolutionary principles can be leveraged to design strategies making agriculture efficient and sustainable."

Future research could apply the new model to specific species to assess crop rotation patterns for specific crops and their pests. The model could also be used to help study the combined effects of crop rotation and other pest control techniques, such as fungicides and use of crops that have been genetically modified for pest resistance.
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:

Citation: Bargués-Ribera M, Gokhale CS (2020) Eco-evolutionary agriculture: Host-pathogen dynamics in crop rotations. PLoS Comput Biol 16(1): e1007546.

Funding: The authors thank the generous funding from the Max Planck Society. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to