Why we differ in our ability to fight off gut infections

January 16, 2020

Τhe ability of the immune system to fight off bacterial, viral and other invading agents in the gut differs between individuals. However, the biological mechanism by which this happens is not well understood, but at least part of this difference may be explained by genetic factors.

Now, scientists at EPFL's Institute of Bioengineering have published two papers in Genome Biology that make significant headway in uncovering the mechanisms by which genetics influences the ability of an organism to mount an immune reaction to an invading gut pathogen. The research was carried out by Michael Frochaux and Maroun Bou Sleiman from Bart Deplancke's research group at EPFL.

Because of obvious ethical reasons, this phenomenon is difficult to study in humans. So the scientists turned to the fruit fly Drosophila melanogaster, since it shares immany of the biological pathways involved in fighting gut infections in humans.

The scientists studied a large panel of genetically distinct fruit fly lines, which vary greatly in their ability to resist gut infection by the severe pathogen Pseudomonas entomophila. To better understand the molecular origin of this variation, the researchers isolated infected guts from each fly line and explored them using a wide array of omics approaches.

In the first paper, the researchers show that gut infection changes RNA splicing, which affects the production of messenger RNA (mRNA), a crucial molecule in the path from gene to protein. Specifically, infection seems to lengthen one end of several mRNAs.

"It is as if the organism intends to add more information in these mRNAs that could then be exploited to further finetune the overall gut immune response," says Deplancke. The change in mRNA length seems to be mediated through a protein called Lark, which binds RNA to form a complex involved in gene expression. When this complexing ability is lost, the fruit flies were less able to recover from a severe gut infection, clearly demonstrating the importance of this process in gut immunity.

The second paper reports the discovery of a number of genetic variants that alter the levels of gene expression in the gut following infection. One particular variant could be directly linked to variation in infection resistance because it modulates the expression level of a gene called Nutcracker. More resistant fly lines showed higher Nutcracker expression compared to less resistant ones.

"This study provides an intriguing example of how variation in the non-coding part of the genome could still critically affect complex traits such as height or disease susceptibility," says Deplancke. "In this case, this includes gut immunocompetence, so we need to consider the whole genome and not just its genes".
-end-
Other contributors

Computational Biology and Data Mining Group, Institute of Molecular Biology
Lebanese University
The Barcelona Institute of Science and Technology
Swiss Institute of Bioinformatics

References

Maroun S. Bou Sleiman, Michael Frochaux, Tommaso Andreani, Dani Osman, Roderic Guigo, Bart Deplancke. Enteric infection induces Lark-mediated intron retention at the 5' end of Drosophila genes. Genome Biology DOI: 10.1186/s13059-019-1918-6

Michael V. Frochaux, Maroun Bou Sleiman, Vincent R. J. Gardeux, Riccardo Dainese, Brian Hollis, Maria Litovchenko, Virginie S. Braman, Tommaso Andreani, Dani Osman, Bart Deplancke. cis-regulatory variation modulates susceptibility to enteric infection in the Drosophila Genetic Reference Panel. Genome Biology DOI: 10.1186/s13059-019-1912-z

Ecole Polytechnique Fédérale de Lausanne

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.