Nav: Home

POSTECH developed self-assembled artificial microtubule like LEGO building blocks

January 16, 2020

Simple LEGO bricks can be assembled to more complicated structures, which can be further associated into a wide variety of complex architectures, from automobiles, rockets, and ships to gigantic castles and amusement parks. Such an event of multi-step assembly, so-called 'hierarchical self-assembly', also happens in living organisms.

Professor Kimoon Kim (Department of Chemistry, POSTECH) and his research team (Center for Self-assembly and Complexity, Institute for Basic Science) discovered that a cucurbituril1)-based host-guest complex polymerized into a linear polymer chain, which was further associated with each other into a hollow microtubule via van der Waals interactions arising from their shape self-complementarity.2) Their novel findings are introduced as a breaking news in Angewandte Chemie International Edition, which is one of the world's renowned journals in Chemistry.

Microtubules exist in living cells of plants and animals and they are essential in maintaining cellular structures, migration of cells, intracellular transport and more. In other words, essential cellular functions such as cellular divisions and intracellular transport cannot be performed when problems occur in formation or dissociation of microtubules.

These microtubules are formed via hierarchical self-assembly of globular proteins in nanometer size, tubulins3), which grow into linear protofilaments.4) Subsequently, these protofilaments are assembled together to build a multi-stranded tubular structure with a length over tens of micrometers.

Before their findings, many attempts have been made to mimic the self-assembly of microtubules in depth for years. However, the formation mechanism of natural microtubules at the molecular level is still ambiguous.

To make artificial microtubules, the research group utilized the cucurbituril-based host-guest complex with two thiol groups attached at the both ends as a building block. This building block assembled into one-dimensional linear polymers by disulfide bond formation. Then, these polymers were laterally associated into a hollow cylindrical architecture similar to natural microtubules through van der Waals interactions. The formation of artificial microtubules was characterized by various spectroscopic and microscopic studies including X-ray diffraction at Pohang Light Source.

Especially, the research team found that the polymer chain became straight and stiff by itself, and eventually LEGO brick-like shape self-complementarity was emerged during the growth of polymer. Strikingly, the convex structures of one chain matched well with the concave parts of the neighboring chains, which allowed lateral association of polymer chains.

The first author of the paper, Wooseup Hwang explained, "Studies before our discovery were focused on mimicking architecture of microtubules. What differentiates our research from the conventional ones is that we attempt to mimic the formation mechanism of microtubules as well as architecture."

Dr. Kangkyun Baek, the other co-corresponding author commented, "We are planning to extend our study to mimic dynamic behaviors and various biological functions of natural microtubules." and "This novel approach based on the shape self-complementarity will make a step forward to understand the formation mechanism of natural microtubules, and offer new opportunities to explore unconventional hierarchical self-assemblies and novel functional materials."
-end-


Pohang University of Science & Technology (POSTECH)

Related Microtubules Articles:

Cellular train track deformities shed light on neurological disease
A new technique allows researchers to test how the deformation of tiny train track-like cell proteins affects their function.
Parkinson's disease protein structure solved inside cells using novel technique
The top contributor to familial Parkinson's disease is mutations in leucine-rich repeat kinase 2 (LRRK2), whose large and difficult structure has finally been solved, paving the way for targeted therapies.
POSTECH developed self-assembled artificial microtubule like LEGO building blocks
Professor Kimoon Kim and his research team identified a new hierarchical self-assembly mechanism
How cells assemble their skeleton
Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport.
Researchers unlock secrets of cell division, define role for protein elevated in cancer
Researchers at Princeton University have successfully recreated a key process involved in cell division in a test tube, uncovering the vital role played by a protein that is elevated in over 25% of all cancers.
Computer model described the dynamic instability of microtubules
Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division.
A simple way to control swarming molecular machines
The swarming behavior of about 100 million molecular machines can be controlled by applying simple mechanical stimuli such as extension and contraction.
Cancer tumours form surprising connections with healthy brain cells
Anti-epileptic medicine can curb the dangerous communication and possibly be part of future treatment.
Stabilizing neuronal branching for healthy brain circuitry
Novel molecular mechanism may regulate microtubule stability, important for neuronal branching and potentially for nerve regeneration.
How microtubules branch in new directions, a first look in animals
Cell biologist Thomas Maresca and senior research fellow Vikash Verma at the University of Massachusetts Amherst say they have, for the first time, directly observed and recorded in animal cells a pathway called branching microtubule nucleation, a mechanism in cell division that had been imaged in cellular extracts and plant cells but not directly observed in animal cells.
More Microtubules News and Microtubules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.