Tiger Beetles Go Blind At High Speeds

January 16, 1998

ITHACA, N.Y. -- Reminder to tiger beetles: If you chase prey at high speeds, you'll go blind.

Entomologists have long noticed that tiger beetles stop-and-go in their pursuit of prey. But until now, scientists have had no idea why this type of beetle attacks its food in fits and starts.

The answer is that the insect's ability to see shuts down after it accelerates toward prey.

"If the tiger beetles move too quickly, they don't gather enough photons (illumination into the beetle's eyes) to form an image of their prey," explained Cole Gilbert, Cornell professor of entomology. "Now, it doesn't mean they are not receptive. It just means that at their speed during the chase, they're not getting enough photons reflected from the prey to make an image and locate the prey. That is why they have to stop, look around and go. Although it is temporary, they go blind."

In nature, such stop-and-go chase patterns are unusual, but the tiger beetle is unique. In the midst of hot pursuit, it stops three or four times to reorient itself toward the prey. Even after a few stops, the tiger beetle has enough time to overtake its prey during its high-speed pursuit.

Results from Gilbert's laboratory observations have been published in a peer-reviewed article, "Visual control of cursorial prey pursuit by tiger beetles (Cicindelidae)," in the Journal of Comparative Physiology Fall 1997.

But, just how fast is fast for a tiger beetle? Gilbert compared an ordinary tiger beetle to Olympic superstar Michael Johnson. Johnson, the world-record holder, can run 200 meters in 19.32 seconds, which averages to a speed of 10.35 meters per second (or 23.1 mph.)

"The top speed for my tiger beetles is 0.5387 meters per second (1.2 mph)," said Gilbert. "This is not very impressive, but the beetles are a lot smaller than Michael Johnson. If we scale the speed for body length, we get a much different picture."

Considering Johnson is about 6 feet tall (1.83 meters), his 10.35 meters per second becomes 5.6 body lengths per second -- "Obviously impressive," Gilbert said. He then explained the tiger beetle has a body length of only 10 millimeters, and its running speed of 0.53 meters per second becomes 53.87 body lengths per second, or relatively 10 times faster than our best human sprinter.

"And the species of tiger beetle I work with (Cicindela repanda) is not even the fastest," explained Gilbert. "There is an Australian species, Cicindela hudsoni, which is 20 millimeters long and can run 2.5 meters per second. This translates into a relative speed of 125 body lengths per second. Michael Johnson would have to run a 200 meter race in 0.87 seconds to equal the relative quickness of the Australian species, or in 2.03 seconds to equal the relative speed of the beetle I work with."

Found throughout the world, tiger beetles come in a variety of species. More than 100 species of the tiger beetle are found in the United States. A common species, Cicindela sexguttata, is a large, metallic-green beetle seen commonly along woodland paths in the spring, said Gilbert. The largest variety in size in New York state is Cicindela formosa. One variety of tiger beetle, Cicindela puritana, which might soon find itself on the endangered species list, lives along the banks of the Connecticut River throughout New Hampshire, Vermont, Massachusetts and Connecticut.

As natural predators, tiger beetles eat just about anything they can catch. Gilbert said they dine on other beetles, hoppers, ants and caterpillars. Tiger beetles are also well-known to scavenge for their food and have been known to scavenge on vertebrate animals.

Gilbert said that after seeking out the reason for the insect's staccato-style chase, the next research step is to learn about the sensitivity of the beetle's photoreceptors, which receive photons and then process those photons into the neurological information that is sent to the beetle's brain. Through this research, he said, science will find out more about this biological tracking system, and he believes this knowledge may one day be used for optimizing artificial tracking systems.

"For example, the Mars Rover needs optical sensors to look around Mars, but it also needs to move around the planet. With speed of movement, there's a trade-off. You want to move quickly to explore a large area, but if you move too fast for the optical sensors to gather enough information to form an image, the exploration is fruitless," said Gilbert. "Through knowledge of biological tracking systems, we can learn how nature has coped with this trade-off, and we may then design better systems to see what is going on around us."
-end-


Cornell University

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.