Key finding in rare muscle disease

January 17, 2007

The finding is in the current issue of Annals of Neurology, a leading international neurology journal, in work led by Professor Nigel Laing and Dr Kristen Nowak of the Laboratory for Molecular Genetics at the Western Australian Institute for Medical Research (WAIMR) and done in collaboration with a number of European researchers.

Professor Laing said his team had discovered a number of children across Europe who, despite a complete absence of the crucial skeletal muscle protein actin, were not totally paralysed at birth, and managed to have some muscle movements.

"This intriguing finding led us to look deeper and what we saw is that while these children do not have any skeletal actin in their skeletal muscle, they have another form of the protein, known as heart actin, in their skeletal muscles," said Professor Laing.

"It appears the more heart actin they have in their skeletal muscles, the more movement they have."

Professor Laing said the finding was providing much excitement.

"Before we are born, we all have both skeletal muscle and heart actin in our skeletal muscles, but around the time of birth, we switch off the heart actin - and right now, it's a mystery why this happens," he said.

"We have long believed that if we could find out how to switch the heart actin back on in the skeletal muscle we could use this to create new treatments for these devastating muscle diseases.

"What's remarkable is that these children's bodies have performed this 'switching on' process naturally, presumably to help counteract their condition, and if we can tap into the science of how they've managed to do that, we could perhaps use that information to help other affected children."

BACKGROUND

Children with these muscle diseases have no skeletal actin because of recessive mutations in the skeletal actin gene which "knock out" the gene function.

The fact that the mutations are recessive means that both the unaffected parents of the patients are carriers of the disease.

Professor Laing's laboratory was the first to discover mutations in the skeletal muscle actin gene which cause muscle diseases.
-end-


Research Australia

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.