Nav: Home

Opioids produce analgesia via immune cells

January 17, 2017

Opioids are the most powerful painkillers. Researchers at the Charité - Universitätsmedizin Berlin have now found that the analgesic effects of opioids are not exclusively mediated by opioid receptors in the brain, but can also be mediated via the activation of receptors in immune cells. These findings represent a novel concept in our understanding of the mechanisms of opioid analgesia. Results from this research, published in the journal Brain, Behavior, and Immunity*, show that pain reduction in mice was mediated by the activation of opioid receptors in immune cells.

Opioids such as morphine are the gold standard for the treatment of severe pain. Until now, opioids were considered to reduce pain by inhibiting the activity of sensory neurons in the brain. However, most pain conditions are associated with damage to peripheral tissue (skin, joints, viscera), which is infiltrated by immune cells. "This prompted us to ask whether opioids could also inhibit pain by acting on immune cells," explains Prof. Dr. Halina Machelska, a researcher at the Department of Anesthesiology and Critical Care Medicine at the Charité - Campus Benjamin Franklin. "We hypothesized that opioids act at opioid receptors on immune cells and release endogenous opioid peptides such as endorphins, enkepahlins and dynorphins. The secreted opioid peptides would then activate neuronal opioid receptors and reduce pain."

Using an animal model of neuropathic pain and three different exogenous opioids (opioid receptor agonists), the researchers led by Prof. Machelska demonstrated that all three agonists alleviated pain. However, animals with reduced numbers of immune cells experienced much weaker analgesia. Interestingly, this analgesia was fully restored when the numbers of immune cells were again increased. This effect was only mediated by immune cells containing opioid receptors. "We were able to show that opioid agonists activate opioid receptors on immune cells, which triggered the release of endogenous painkillers (opioid peptides) and produced analgesia in a mouse model of neuropathic pain," explains Prof. Machelska. She adds, "This led us to conclude that opioids can exert enhanced analgesia when they act directly in painful tissue - providing that this tissue is inflamed and contain immune cells." These findings are relevant for many pain conditions, including arthritis, nerve damage, post-surgical and cancer pain, since all of them are associated with an immune response. Furthermore, opioids acting directly within peripheral inflamed tissue, outside of the brain, will not produce undesirable effects such as nausea, breathing difficulties, and addiction. These findings provide incentives for the development of new opioids exerting analgesia selectively in peripheral damaged tissue infiltrated by immune cells expressing opioid receptors.
-end-
* Melih Ö. Celik, Dominika Labuz, Karen Henning, Melanie Busch-Dienstfertig, Claire Gaveriaux-Ruff, Brigitte L. Kieffer, Andreas Zimmer, Halina Machelska. Leukocyte opioid receptors mediate analgesia via Ca2+-regulated release of opioid peptides. Brain Behav Immun. 2016 Oct. doi: 10.1016/j.bbi.2016.04.018. Epub 2016 Apr 30. http://dx.doi.org/10.1016/j.bbi.2016.04.018

Contact:
Prof. Dr. Halina Machelska
Department of Anesthesiology and Critical Care Medicine
Charité-Universitätsmedizin Berlin
Campus Benjamin Franklin
Tel: +49 30 8445 3851
Email: halina.machelska@charite.de

Links: Department of Anesthesiology and Critical Care Medicine

Charité - Universitätsmedizin Berlin

Related Immune Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.