Nav: Home

See how immune cells break through blood vessel walls

January 17, 2017

In any given second, thousands of immune cells are poking holes in your blood vessels as they travel out of the blood stream to survey your organs for problems or join the fight against a pathogen. Despite the constant assault, the damage is negligible, and in a study, appearing January 17 in Cell Reports, researchers may reveal why: as immune cells squeeze their nuclei through blood vessel walls, the force breaks thin filaments that make up the cytoskeleton -- the scaffold proteins that give a cell its shape -- of individual endothelial cells that hold the wall together. These filaments are known to quickly be replaced.

"Initially we thought that immune cells just dissolve the entire cytoskeleton of these endothelial cells and then reseal everything, but we didn't find any sign of massive destruction," says senior author Ronen Alon, an immunologist and stem cell researcher at the Weizmann Institute of Science in Israel. "Following fluorescence imaging, electron microscopy, and ultrastructural analysis, we found a subset of very tiny, interlacing filaments that crisscross throughout thicker elastic fibers that comprise the individual blood vessel wall cells, and we think that these tiny filaments are the ones that break during leukocyte squeezing and then rapidly reassemble."

In general, the thin blood vessel walls crossed by infiltrating immune cells at most tissues are effective at keeping blood and circulating immune cells in and anything that doesn't belong out. When subsets of immune cells, white blood cells (leukocytes), encounter specific signals on blood vessels at nearby sites of infection or inflammation, these chemicals guide the immune cells to stop and exit the blood vessels. Shortly after arresting, leukocytes use additional chemoattractive signals to crawl, protrude and squeeze their bodies, generating pores or gaps with a diameter of 4 to 5 microns, which is about the diameter of their bulky nuclei.

The long-standing question has been whether these openings form because the blood vessel cells are contracting like small muscles in response to their interactions with arrested and crawling leukocytes. The Alon study, which was based on both in vitro and animal models, suggests that the openings in fact involve an active process imposed by the nuclei of the squeezing leukocytes: these nuclei are pushed forward by the leukocyte's own motors bending and snapping the various filaments that comprise the cytoskeleton of the endothelial cells breached by the squeezing leukocyte.

"We poisoned the contractile machinery of the blood vessel cells and immune cells could still normally squeeze through, generating large gaps and pores," says Alon. "This was a big surprise. We then used other biochemical manipulations, which have led to the conclusion that it is the breakage of the thin filaments of endothelial cells that open gaps in response to the squeezed nucleus of each immune cell acting like a drill."

There are more questions about the physics of how this is happening that need to be explored. The research is also relevant to cancer physiology, as tumor cells are much less efficient than leukocytes in their ability to move their nucleus forward and squeeze it through blood vessels at sites of metastasis.
-end-
This research was supported by the Israel Science Foundation, the Flight Attendant Medical Research Institute Foundation (FAMRI), U.S.A., and the Minerva Foundation, Germany.

Cell Reports, Barzilai et al.: "Leukocytes breach endothelial barriers by insertion of nuclear lobes and disassembly of endothelial actin filaments" http://www.cell.com/cell-reports/fulltext/S2211-1247(16)31798-3

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Blood Vessels Articles:

3D printing, bioinks create implantable blood vessels
A biomimetic blood vessel was fabricated using a modified 3D cell printing technique and bioinks.
When blood vessels are overly permeable
In Germany alone there are around 400,000 patients who suffer from chronic inflammatory bowel diseases.
Nicotine-free e-cigarettes can damage blood vessels
A Penn study reveals single instance of vaping immediately leads to reduced vascular function.
Creating blood vessels on demand
Researchers discover new cell population that can help in regenerative processes.
Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients
A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial.
Found: the missing ingredient to grow blood vessels
Researchers have discovered an ingredient vital for proper blood vessel formation that explains why numerous promising treatments have failed.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Like a zipper -- how cells form new blood vessels
Blood vessel formation relies on the ability of vascular cells to move while remaining firmly connected to each other.
Blood vessels instruct brain development
The group of Amparo Acker-Palmer (Buchmann Institute of Molecular Life Sciences and the Institute of Cell Biology and Neuroscience, Goethe University) reported in a Research Article in the last issue of the journal Science a novel function of blood vessels in orchestrating the proper development of neuronal cellular networks in the brain.
Texas A&M team develops new way to grow blood vessels
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants.
More Blood Vessels News and Blood Vessels Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.