Nav: Home

Discovery of a protein that protects against fatty liver

January 17, 2017

This condition generally leads to chronic inflammation (non-alcoholic steatohepatitis), which can trigger fibrosis, cirrhosis and ultimately liver cancer. This study on the basic biology of the liver paves the way to examine therapeutic strategies to fight and prevent fatty liver disease. The results have appeared in Nature Cell Biology this week.

CPEB4 and fatty liver

Non-alcoholic fatty liver is characterised by the accumulation of fat deposits in hepatocytes. The development of this condition is determined by many factors that have not been well described to date. However, obesity and lifestyle, as well as aging, are associated with an increase in the incidence of this disease. Also, a number of large-scale genomics studies have linked variants of the CPEB4 gene with the impairment of fat metabolism.

The scientists at IRB Barcelona depleted CPEB4 expression in mouse livers in order to study the function of this protein. They observed that the mice developed fatty liver as they aged. Furthermore, young CPEB4-depleted mice fed a high-fat diet also developed this condition in a more pronounced manner.

Carlos Maíllo, first author of the article and PhD student at IRB Barcelona funded by a "la Caixa" grant, has described the molecular function of CPEB4. He reveals that this protein is essential to drive the liver stress response.

Specifically, under stress, caused by uncontrolled ingestion of fats for example, the endoplasmic reticulum--a cell organelle associated with protein synthesis and folding and lipid metabolism--stops its activity in order to re-establish cell equilibrium. This "clean-up" mechanism is orchestrated by CPEB4 and varies in function of the time of day--being more active in humans during the day (when the liver has most work) and dropping off at night.

Without CPEB4, the endoplasmic reticulum is unable to activate the stress response, thus causing hepatocytes to accumulate the lipids produced by the fatty liver.

New treatments?

Raúl Méndez, ICREA researcher at IRB Barcelona and co-leader of the study, explains that "knowledge of the hepatic function of CPEB4 could be useful as a predictive marker for those people with variants of this protein, thus serving to prevent this condition, for example, through improvements in diet and better choice of eating times. Such knowledge could also contribute to the development of treatments that boost the clean-up process".

The researchers have managed to reverse fatty liver disease in mice by treatment with a drug called Tudca, which is currently used for other disorders. This drug exerts the same function as the proteins that are activated by CPEB4 and that are responsible for cleaning up the cell, namely chaperones. "In the future it may be possible to design molecules like Tudca that specifically target CPEB4, thus enhancing the liver clean-up process," proposes Méndez.

"This basic research study does not have a direct and immediate clinical application, but it lays down the foundation for the applied science that follows," says Mercedes Fernández, co-leader of the study and head of the group at IDIBAPS and the Biomedical Research Networking Center of Hepatic and Digestive Diseases (CIBEREHD).

Fernández warns, "Given the obesity epidemic in the US and worldwide, an increase in those affected by non-alcoholic fatty liver disease is expected in the coming decades and we still do not have a suitable treatment for this condition; A fundamental understanding of this medical problem is therefore essential for development of novel treatment strategies."

It is estimated that between 80 and 100 million people in the US alone suffer from fatty liver disease. People with this disease have an increased risk of cirrhosis and liver cancer. Moreover, liver cancer incidence has more than tripled since 1980 and is the primary cause of death in patients with cirrhosis.
-end-
This study has received funding from the Worldwide Cancer Research Foundation in the UK, the Spanish Association Against Cancer (AECC), the Fundación Botín by Banco Santander through its Santander Universities Global Division, the Spanish Ministry of Economy and Competitiveness/ERDF and the Government of Catalonia.

Reference article:

Carlos Maillo, Judit Martín, David Sebastián, Maribel Hernández-Alvarez, Mar García-Rocha, Oscar Reina, Antonio Zorzano, Mercedes Fernandez and Raúl Méndez

Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress

Nature Cell Biology (2017) DOI: 10.1038/ncb3461

Institute for Research in Biomedicine (IRB Barcelona)

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...