Nav: Home

Scientists find sensor that makes synapses fast

January 17, 2017

Synapses, the connections between neurons, come in different flavors, depending on the chemical they use as transmitter. Signal transmitters, or neurotransmitters, are released at the synapse after calcium ions flow into the neuron. The type of synapses that use a signal transmitter called GABA - the GABAergic synapses -- stand out because of their speed and precision. But the secret behind their speed was not fully known until now, and neither was the sensor they use to detect the inflowing calcium. Both questions were solved in a study published today in Cell Reports by Peter Jonas, Professor at the Institute of Science and Technology Austria (IST Austria), together with his group and researchers at the Max Planck Florida Institute for Neuroscience. They find that GABAergic synapses achieve their remarkable signalling speed and reliability partly because of the sensor they use to measure the amount of calcium in the neuron, and that synaptotagmin 2 is the major calcium sensor in this kind of synapses. "We have, for the first time, identified the calcium sensor that triggers neurotransmitter release at an inhibitory synapse", summarizes Peter Jonas.

Interneurons that use GABA as neurotransmitter play a key role in controlling activity in neuronal microcircuits. In all brain regions and species, the hallmark of these GABAergic interneurons is their signalling speed: the delay between stimulation and response lies in the submillisecond range. Peter Jonas and his team asked whether the calcium sensor that triggers neurotransmitter release contributes to this speed. In their study, they investigate the synapse between basket cells and Purkinje cells. This major inhibitory synapse is located in the cerebellum, a brain region that plays an important role in motor control.

While synaptotagmin 1 is the calcium sensor used at excitatory synapses, Peter Jonas and colleagues identify synaptotagmin 2 as the major calcium sensor in inhibitory GABAergic interneurons in the cerebellum. They demonstrate that synaptotagmin 2 triggers a quicker release of neurotransmitter than synaptotagmin 1. At the same time, synaptotagmin 2 also causes a faster refilling of vesicles with neurotransmitter, so that the neuron is ready to send another signal more quickly. This has important consequences for the function of GABAergic interneurons, explains Peter Jonas: "Using synaptotagmin 2 is one reason why GABAergic synapses send signals so fast. Synaptotagmin 2 may control the speed of inhibition in microcircuits, and allow GABAergic synapses to maintain their output by quickly replenishing the pool of neurotransmitter."
-end-


Institute of Science and Technology Austria

Related Calcium Articles:

A docking site per calcium channel cluster
In our brain, information is passed from one neuron to the next at a structure called synapse.
Astrophysicists discovered a star polluted by calcium
An international team of astrophysicists led by a scientist from the Sternberg Astronomical Institute of the Lomonosov Moscow State University reported the discovery of a binary solar-type star inside the supernova remnant RCW 86.
Daily reminders to increase calcium intake are effective
Mary Jung, an assistant professor of health and exercise sciences at UBC's Okanagan campus, recently completed a nationwide study with more than 730 Canadians who were not meeting Canada's recommended dietary intake for calcium.
New guideline on calcium and vitamin D supplementation
A new evidence-based clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology says that calcium with or without vitamin D intake from food or supplements that does not exceed the tolerable upper level of intake should be considered safe from a cardiovascular standpoint.
Calcium induces chronic lung infections
The bacterium Pseudomonas aeruginosa is a life-threatening pathogen in hospitals.
Calcium supplements may damage the heart
After analyzing 10 years of medical tests on more than 2,700 people in a federally funded heart disease study, researchers at Johns Hopkins Medicine and elsewhere conclude that taking calcium in the form of supplements may raise the risk of plaque buildup in arteries and heart damage, although a diet high in calcium-rich foods appears be protective.
Physics researchers question calcium-52's magic
After a multi-institution team's work computing the calcium-48 nucleus, researchers moved on to a larger, heavier, and more complex isotope -- calcium-52 -- and the results surprised them once again.
Study paves way for new therapies in fight against calcium disorders
A study led by researchers at Georgia State University provides new insights into the molecular basis of human diseases resulting from mutations in the calcium-sensing receptor, a protein found in cell membranes.
Calcium channels team up to activate excitable cells
Voltage-gated calcium channels open in unison, rather than independently, to allow calcium ions into and activate excitable cells such as neurons and muscle cells, researchers with UC Davis Health System and the University of Washington have found.
A calcium pump caught in the act
Researchers at Aarhus University have described one of the cell's key enzymes, the calcium pump, in its decisive moment -- a so-called transition state.

Related Calcium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...