Nav: Home

The power of attraction

January 17, 2017

Engineered nanometer- and micrometer-scale structures have a vast array of uses in electronics, sensors and biomedical applications. Because these are difficult to fabricate, KAUST researchers are trying a bottom-up philosophy, which harnesses the natural forces between atoms and molecules such that microstructures form themselves.

This approach, a departure from the usual top-down approach, involves the etching away of material to leave the desired sculpted structure behind; however, because this approach can be tricky, expensive and time consuming, KAUST researchers became motivated to find a new approach.

Associate Professor of Chemical Science Niveen Khashab and her team and colleagues from the Imaging and Characterization Core Lab and the Max-Planck-Institute of Colloids and Interfaces in Germany demonstrated this bottom-up approach in the self-assembly of microscale toroids (doughnut-shaped forms), made of both inorganic and organic materials1.

A number of forces can bring atoms and molecules together. These include surface tension, electrostatic attraction and repulsion, and a weak fundamental force known as van der Waals interactions. The toroids created by Khashab's team were formed via metal coordination. A metallic sodium chloride atom, an amphiphilic (both hydrophilic and lipophilic) molecule called saponin and a polymer known as chitosan were combined and formed weak chemical bonds.

"This is a result of what is known as coordination-driven self-assembly," explained Khashab. "The metal ions interact with different chemical motifs leading to the formation of novel frameworks and morphologies."

Within just a few minutes, coordination bonding between the iron atoms and the oxygen and the hydrogen in the molecules initially drives the self-assembly of star-like nanostructures. Repulsive electrostatic and hydrophobic interactions then lead to the formation of toroids.

The toroids were approximately 3.9 to 4.8 micrometers in diameter and held their shape even a month after fabrication. Disassembly of the microstructures required five hours of mechanically stirring the solution.

There are numerous naturally occurring biological structures that take a toroid shape; for example, proteins and DNA of some types of viruses and bacteria self-assemble in this way. Many of these are known to play an important role in the formation of pores in biomembranes.

This research could help to build a better understanding of how these complex biostructures are created and provide a way of mimicking them at the molecular level.

"Next, we hope to prepare a new generation of these hybrid structures with a temperature-responsive gap size," said Khashab. "These toroid structures could be used as pockets for active catalysis and separation."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with LegosĀ® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...