Nav: Home

Cell biology: Take the mRNA train

January 17, 2017

Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have elucidated how the motors recognize their mRNA freight.

Messenger RNAs carry the information for the assembly of proteins from the DNA in the cell nucleus to the sites of protein synthesis in the cytoplasm, and are crucial for cell function. In nerve cells, which form cytoplasmic processes that can be very long, many neuronal mRNAs must be conveyed to the sites of action of their protein products to ensure that the correct intercellular connections can be established. This requires a dedicated transport system that links remote regions of the cytoplasm with the cell nucleus. Dierk Niessing, a professor at LMU's Biomedical Center and leader of a research group in the Institute of Structural Biology at the Helmholtz Zentrum München, has now characterized the structure of a macromolecular complex involved in the transport of mRNAs in yeast cells. The new findings appear in the journal Nature Structural & Molecular Biology.

As a member of the DFG Research Unit "Macromolecular Complexes in mRNA Localization" Niessing explores the workings of the cell's molecular transport systems in several model organisms. In the new study, carried out in collaboration with first author Franziska Edelmann at the Helmholtz Zentrum München, the authors used baker's yeast (Saccharomyces cerevisiae) to investigate at high resolution the succession of structural interactions required for the specific recognition of mRNA in the nucleus and its subsequent transport in the cytoplasm.

The research team systematically isolated and crystallized sub-complexes of the molecular machine responsible for the process and subjected them to X-ray crystallographic analysis. The resulting models clearly show, for the first time, how the hairpin-like conformation of the RNA is altered when it is recognized by the requisite binding proteins in the nucleus. "We were surprised to see that the RNA is not only recognized by these proteins, they also force it to adopt a new form. They staple it together, so to speak," Niessing says. Carriage of the RNAs is the responsibility of so-called motor proteins. With the help of unfolded adaptor proteins, they attach to the RNA-protein complex as it emerges from the nucleus. In doing so, they stabilize the whole assembly, as the structural models demonstrate, thus allowing the RNA to be transported to its destination along the fibers that make up the cytoskeleton, which serve as the system's 'railway lines'.

The new data represent a major advance in our understanding of the transport of RNA - a process that is common to all organisms whose cells are nucleated and is vital for their survival.
-end-


Ludwig-Maximilians-Universität München

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Proteins: Structure and Function
by David Whitford (Author)

Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Proteins: Structures and Molecular Properties
by Thomas E. Creighton (Author)

Proteins (Explore the molecules of life)
by Tali Lavy (Author), Ofir Corcos (Illustrator)

The High-Protein Vegetarian Cookbook: Hearty Dishes that Even Carnivores Will Love
by Katie Parker (Author), Kristen Smith (Author)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

The Protein Power Lifeplan
by Michael R. Eades (Author), Mary Dan Eades (Author)

Plant-Protein Recipes That You'll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

Clean Protein: The Revolution that Will Reshape Your Body, Boost Your Energy—and Save Our Planet
by Kathy Freston (Author), Bruce Friedrich (Author)

The Oil-Protein Diet Cookbook
by Johanna Budwig (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...