Nanotechnology: Lighting up ultrathin films

January 17, 2017

Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a method for rapid and efficient characterization of these materials.

Chemical compounds based on elements that belong to the so-called transition metals can be processed to yield atomically thin two-dimensional crystals consisting of a monolayer of the composite in question. The resulting materials are semiconductors with surprising optical properties. In cooperation with American colleagues, a team of LMU physicists led by Alexander Högele has now explored the properties of thin-film semiconductors made up of transition metal dichalcogenides (TMDs). The researchers report their findings in the journal Nature Nanotechnology.

These semiconductors exhibit remarkably strong interaction with light and therefore have great potential for applications in the field of opto-electronics. In particular, the electrons in these materials can be excited with polarized light. "Circularly polarized light generates charge carriers that exhibit either left- or right-handed circular motion. The associated angular momentum is quantized and described by the so-called valley index which can be detected as valley polarization," Högele explains. In accord with the laws of quantum mechanics, the valley index can be used just like quantum mechanical spin to encode information for many applications including quantum computing.

However, recent studies of the valley index in TMD semiconductors have led to controversial results. Different groups worldwide have reported inconsistent values for the degree of valley polarization. With the aid of their newly developed polarimetric method and using monolayers of the semiconducting TMD molybdenum disulfide as a model system, the LMU researchers have now clarified the reasons for these discrepancies: "Response to polarized light turns out to be very sensitive to the quality of the crystals, and can thus vary significantly within the same crystal," Högele says. "The interplay between crystal quality and valley polarization will allow us to measure rapidly and efficiently those properties of the sample that are relevant for applications based on the valley quantum degree of freedom."

Moreover, the new method can be applied to other monolayer semiconductors and systems made up of several different materials. In the future, this will enable the functionalities of devices based on atomically thin semiconductors -- such as novel types of LEDs -- to be characterized swiftly and economically.
-end-


Ludwig-Maximilians-Universität München

Related Semiconductors Articles from Brightsurf:

Scientists develop method to detect charge traps in organic semiconductors
Scientists at Swansea University have developed a very sensitive method to detect the tiny signatures of so called 'charge traps' in organic semiconductors.

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'.

Shedding light on the development of efficient blue-emitting semiconductors
Scientists at Tokyo Institute of Technology (Tokyo Tech) have discovered a new alkali copper halide, Cs5Cu3Cl6I2, that emits pure blue light.

Theoretical prediction of reverse intersystem crossing for organic semiconductors
A team of Japanese researchers developed a method to predict rate constants of reverse intersystem crossing (RISC) associated with light emission efficiency of organic semiconductors used for OLED through quantum chemical calculations with computers.

2D semiconductors found to be close-to-ideal fractional quantum hall platform
Columbia University researchers report that they have observed a quantum fluid known as the fractional quantum Hall states (FQHS), one of the most delicate phases of matter, for the first time in a monolayer 2D semiconductor.

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates
An Australian has published an extensive review of spin-gapless semiconductors (SGSs), a new class of 'zero bandgap' materials which have fully spin polarised electrons and holes, and first proposed in 2008 by the review team's lead, Professor Xiaolin Wang (University of Wollongong).

2D molecular crystals modulating electronic properties of organic semiconductors
Recently, researchers report a controllable surface doping strategy utilizing 2D molecular crystals (2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs.

Shedding new light on nanolasers using 2D semiconductors
Cun-Zheng Ning, a professor of electrical engineering in the Ira A.

The future of semiconductors is clear
Mobility is a key parameter for semiconductor performance and relates to how quickly and easily electrons can move inside a substance.

Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.

Read More: Semiconductors News and Semiconductors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.