Nav: Home

Metabolic pathway regulating key stage of embryo development revealed

January 17, 2017

Researchers identify metabolic pathway essential for embryo development, thus extending knowledge of how embryos form and how to develop a safer drug regimen for pregnant women

Tokyo - Much has been revealed about how a single fertilized cell, the egg, can develop into a complete organism simply via repeated cycles of cell division. However, many gaps remain in our understanding of how these dividing cells are directed to arrange themselves appropriately at each stage of embryonic development.

Researchers centered at Tokyo Medical and Dental University (TMDU) have now made a major step in delineating such development in the womb by showing the importance of a particular metabolic pathway for formation of the "primitive streak" in embryos. This primitive streak is a groove that maintains symmetry of the embryo and allows it to develop properly.

After fertilization, the egg repeatedly undergoes cell division, leading to a ball of cells with 2, 4, 8, 16, 32 cells, and so on. However, for development into a fully formed embryo, the ball must undergo a process called gastrulation, whereby it is transformed into a hollow, ball-like, three-layered structure. Initiation of gastrulation requires the primitive streak.

To shed light on primitive streak formation, the team applied a tool that uses clusters of mouse embryonic stem cells to mimic embryo development. By applying a wide range of drugs to these embryo mimics, they identified a number of drugs that stopped the embryonic cells from developing and differentiating normally. Some of the drugs block the functioning of the mevalonate pathway, so the team looked at whether, and how, this metabolic pathway is linked to the primitive streak.

"When we applied the drugs statins, which are extremely useful for lowering cholesterol levels, to the embryo mimics, they stopped differentiating normally into cardiomyocytes at a time that corresponds to when the primitive streak forms," study coauthor Ruoxing Yu says. "Interference with the mevalonate pathway in this way resulted in a reduced survival rate of the embryos."

Equivalent experiments in zebrafish, another useful model for biological studies, confirmed that embryonic development was halted by blocking of the mevalonate pathway. The team then looked at the specific effects of this blocking. They found that it involves cessation of a form of protein modification called farnesylation; specifically that of a protein called lamin-B. This was confirmed by switching lamin-B expression on or off in the embryo mimics, which affected the expression of other protein markers specifically expressed in the primitive streak.

"This discovery of the involvement of the mevalonate pathway and lamin farnesylation in primitive streak formation greatly raises our understanding of how embryos are programmed to develop through the gastrulation stage," lead author Yoshimi Okamoto-Uchida says. "This is also important because statin drugs are widely used for purposes such as lowering cholesterol, but the use of these drugs in pregnant women is forbidden. Our results shed light on how these drugs affect embryo development, which helps understanding of the guidelines regarding statin use in pregnant women."
-end-


Tokyo Medical and Dental University

Related Cell Division Articles:

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.
Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.
Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.
More Cell Division News and Cell Division Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...