Nav: Home

Calorie restriction lets monkeys live long and prosper

January 17, 2017

MADISON, Wis. -- Settling a persistent scientific controversy, a long-awaited report shows that restricting calories does indeed help rhesus monkeys live longer, healthier lives.

A remarkable collaboration between two competing research teams -- one from the University of Wisconsin-Madison and one from the National Institute on Aging -- is the first time the groups worked together to resolve one of the most controversial stories in aging research.

The findings by the collaboration -- including Senior Scientist Ricki Colman of the Wisconsin National Primate Research Center and UW-Madison Associate Professor of Medicine Rozalyn Anderson; and NIA Staff Scientist and Nonhuman Primate Core Facility Head Julie Mattison and Senior Investigator and Chief of the Translational Gerontology Branch Rafael de Cabo -- were published today (Jan. 17, 2017) in the journal Nature Communications.

In 2009, the UW-Madison study team reported significant benefits in survival and reductions in cancer, cardiovascular disease, and insulin resistance for monkeys that ate less than their peers. In 2012, however, the NIA study team reported no significant improvement in survival, but did find a trend toward improved health.

"These conflicting outcomes had cast a shadow of doubt on the translatability of the caloric-restriction paradigm as a means to understand aging and what creates age-related disease vulnerability," says Anderson, one of the report's corresponding authors. Working together, the competing laboratories analyzed data gathered over many years and including data from almost 200 monkeys from both studies. Now, scientists think they know why the studies showed different results.

First, the animals in the two studies had their diets restricted at different ages. Comparative analysis reveals that eating less is beneficial in adult and older primates but is not beneficial for younger animals. This is a major departure from prior studies in rodents, where starting at an earlier age is better in achieving the benefits of a low-calorie diet.

Second, in the old-onset group of monkeys at NIA, the control monkeys ate less than the Wisconsin control group. This lower food intake was associated with improved survival compared to the Wisconsin controls. The previously reported lack of difference in survival between control and restricted groups for older-onset monkeys within NIA emerges as beneficial differences when compared to the UW-Madison data. In this way, it seems that small differences in food intake in primates could meaningfully affect aging and health.

Third, diet composition was substantially different between studies. The NIA monkeys ate naturally sourced foods and the UW-Madison monkeys, part of the colony at the Wisconsin National Primate Research Center, ate processed food with higher sugar content. The UW-Madison control animals were fatter than the control monkeys at NIA, indicating that at nonrestricted levels of food intake, what is eaten can make a big difference for fat mass and body composition.

Finally, the team identified key sex differences in the relationship between diet, adiposity (fat), and insulin sensitivity, where females seem to be less vulnerable to adverse effects of adiposity than males. This new insight appears to be particularly important in primates and likely is translatable to humans.

The upshot of the report is that caloric restriction does indeed seem to be a means to affect aging. However, for primates, age, diet and sex must all be factored in to realize the full benefits of lower caloric intake.
-end-


University of Wisconsin-Madison

Related Aging Articles:

Brain development and aging
The brain is a complex organ -- a network of nerve cells, or neurons, producing thought, memory, action, and feeling.
Aging gracefully in the rainforest
In an article that appears in the current issue of Evolutionary Anthropology, researchers synthesize over 15 years of theoretical and empirical findings from long-term study of the Tsimane forager-farmers.
Reversing aging now possible!
DGIST's research team identified the mechanism of reversible recovery of aging cells by inducing lysosomal activation.
Brain-aging gene discovered
Researchers at Columbia University Medical Center have discovered a common genetic variant that greatly affects normal brain aging in older adults.
Aging can be good for you (if you're a yeast)
It's a cheering thought for anyone heading towards their golden years.
How eating less can slow the aging process
New research shows why calorie restriction made mice live longer and healthier lives.
Turning back the aging clock
By boosting genes that destroy defective mitochondrial DNA, researchers can slow down and potentially reverse an important part of the aging process.
Insilico Medicine launches a deep learned biomarker of aging, Aging.AI 2.0 for testing
Insilico Medicine, Inc., a company applying latest advances in deep learning to biomarker development, drug discovery and aging research, launched Aging.AI 2.0.
Substance with the potential to postpone aging
The coenzyme NAD+ plays a main role in aging processes.
What does a healthy aging cat look like?
Just as improved diet and medical care have resulted in increased life expectancy in humans, advances in nutrition and veterinary care have increased the life span of pet cats.

Related Aging Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...