Nav: Home

Baby brains help infants figure it out before they try it out

January 17, 2018

Babies often amaze their parents when they seemingly learn new skills overnight -- how to walk, for example. But their brains were probably prepping for those tasks long before their first steps occurred, according to researchers.

Researchers at Penn State are using new statistical analysis methods to compare how we observe infants develop new skills with the unseen changes in electrical activity in the brain, or electroencephalography (EEG) power. They found that most babies appear to learn new skills in irregular bursts, while their EEG power grows steadily behind the scenes.

Koraly Perez-Edgar, professor of psychology at Penn State, said the study -- published today (Jan. 17) in Child Development -- supports long-standing but untested beliefs about how infants develop.

"This is a question that has bedeviled psychologists for most of the last century. Our data help show how behaviors that we can observe in children are indeed non-linear, showing up in spurts," Perez-Edgar said. "However, the underlying forces that help support this observed behavior can be linear. For a long time there was a debate over whether both of these things could hold true."

Perez-Edgar said that while the famous child psychologist Jean Piaget theorized that young children develop in bursts instead of little by little over time, testing the theory was limited by the statistical analysis tools available to researchers. But with new modeling methods, the researchers were able to better examine how behavioral development is related to growth in brain activity.

"Psychologists have been suggesting that while on the surface development looks like these quick bursts, underneath there may be very continuous, slowly developing mechanisms that one day look like they popped out of nowhere," Perez Edgar said. "Like with kids learning to talk, it looks like they learn all these words overnight, but they've been listening and thinking and processing for a long time."

A total of 28 six-month-old infants were recruited and brought to the lab once a month until they turned one year old. During each visit, the baby participated in a cognitive test called the "a-not-b task," designed in the 1950s to measure an infant's understanding of object permanence: knowing something exists even if it's out of sight.

In the task, a researcher put a cardboard box with two wells -- A and B -- across from the infant. The researcher then hid a toy in one well and covered it with cloth, hiding it from view. The infant was considered successful if they correctly retrieved the toy twice from well A and then once from well B after the researcher hid it.

"How babies perform in this task tells us a lot about their development because it's a coordination of multiple skills," said Leigha MacNeill, Penn State graduate student in psychology. "They have to remember where the ball was moved, which is working memory. They have to know an object exists even though it's out of sight, and they need to track objects moving in space from one place to another. All of this also required them to pay attention. So there's a lot going on."

The researchers also measured the infants' EEG at each visit. A cap with six electrodes was placed on the baby's head, with each electrode measuring the electrical activity in different regions of the brain. Readings were taken for two minutes while the infants focused on a spinning wheel.

After analyzing the data, the researchers found that performance on the a-not-b task did indeed develop in bursts: with most of the infants, there wasn't a lot of development in the first or last months, but there was a big spike between seven and eleven months. At the same time, the researchers found that EEG power grew at a steady pace throughout the seven months.

"We saw that a nonlinear growth curve was the best way to describe most of the babies," MacNeill said. "Meanwhile, we found that there was significant linear change at all electrode locations. We also saw associations between EEG power in the occipital lobe and performance on the a-not-b task. Infants who had lower levels of occipital power at six months of age had faster increases in a-not-b performance over time."

Because the researchers analyzed each baby's personal development, in addition to taking an average of all the babies together, MacNeill said the results help shed some light on what's happening in the brain when infants are learning new skills.

"Infant behavior varies so much from baby to baby, so it's helpful to understand what's going on beneath the surface," MacNeill said. "This multi-method approach is helpful, because we can see both the infants' behavior and also what's going on in the brain. It gives us a better sense of where this variability comes from, and can help us see what's happening in the brain when the infant isn't getting better at the task verses when there's rapid development."
-end-
Nilam Ram, Penn State; Martha Ann Bell, Virginia Tech; and Nathan A. Fox, University of Maryland, also participated in this study.

This work was supported by an National Institutes of Health grant to Nathan A. Fox.

Penn State

Related Brain Articles:

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.