Nav: Home

The world's first all-Si laser

January 17, 2018

Integrated Si photonics incorporates the essence of the two pillar industries of "microelectronics" and "optoelectronics", which is expected to bring new technological revolution in a variety of fields such as communication, sensing, lighting, dispalay, imaging, detection, etc. Si lasers are the key to achieve integrated Si photonics. However, the optical gains of Si are lower than those of III-V compound semiconductors by one order of magnitude or two, due to its indirect bandgap feature. Although the fabrication of matured III-V compound lasers on Si substrates has been proposed to circumvent this problem, the development of all-Si laser is still in high demand for integrated Si photonics, due to its better compatibility with modern Si techniques.

Recently, a joint research team led by Prof. X. Wu, Prof. M. Lu and associate Prof. S.-Y. Zhang from Fudan University developed the world's first all-Si laser using Si nanocrystals with high optical gains. First, they enhanced the Si emission intensity greatly by developing a film growth technique for high-density silicon nanocrystals (Physica E, 89, 57-60(2017)). Then, they developed a high-pressure low-temperature passivation approach, which contributed to a full saturation of dangling bonds, leading to increased optical gains that were comparable to those achieved by gallium arsenide (GaAs) and indium phosphide (InP). On this basis, they designed and fabricated distributed feedback (DFB) resonance cavities and successfully achieved optically pumped all-Si DFB lasers. The optically pumped all-Si laser also paves the way towards the realization of electrically pumped all-Si laser.

It was found that the optical gain of Si nanocrystals was constantly enhanced as the passivation proceeded and eventually reached the value comparable to those of GaAs and InP. Lasing characteristics - the threshold effect, the polarization dependence, the significant spectral narrowing and small spread of divergence angle of stimulated emission - were fulfilled, suggesting the realization of an optically pumped all-Si laser. The lasers also showed reliable repeatability. The lasing peaks of the four additional samples made under the similar fabrication conditions were within the spectral range of 760 nm to 770 nm. The variation in the lasing peak was due to the slight difference in effective refractive indices. The full-width-at-half-maximum (FWHM) of the emission peak was narrowed from ~120 nm to 7 nm when the laser was pumped above threshold. This program is supported by the National Natural Science Foundation of China (51472051, 61275178, 61378080, 61705042) and Shanghai Sailing Program (16YF1400700).
-end-
Dong-Chen Wang#, Chi Zhang#, Pan Zeng, Wen-Jie Zhou, Lei Ma, Hao-Tian Wang, Zhi-Quan Zhou, Fei Hu, Shu-Yu Zhang*, Ming Lu*, and Xiang Wu*. An all-silicon laser based on silicon nanocrystals with high optical gains. Science Bulletin, https://www.sciencedirect.com/science/article/pii/S2095927318300069

Science China Press

Related Laser Articles:

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
New laser advances
Lasers are poised to take another step forward: Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage.
More Laser News and Laser Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.