Nav: Home

Building molecular wires, one atom at a time

January 17, 2018

Electronic devices are getting smaller and smaller. Early computers filled entire rooms. Today you can hold one in the palm of your hand. Now the field of molecular electronics is taking miniaturization to the next level. Researchers are creating electronic components so tiny they can't be seen with the naked eye.

Molecular electronics is a branch of nanotechnology that uses single molecules, or nanoscale collections of molecules, as electronic components. The purpose is to create miniature computing devices, replacing bulk materials with molecular blocks.

For instance, metal atoms can be made into nanoscale 'molecular wires.' Also known as Extended Metal Atom Chains (EMACs), molecular wires are one-dimensional chains of single metal atoms connected to an organic molecule, called a ligand, that acts as a support. Molecular wire-type compounds have a diverse array of potential uses, from LED lights to catalysts.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have found a simple way to create copper molecular wires of different lengths by adding or removing copper atoms one by one. "This is the first example of a molecular copper wire being formed in a stepwise, atom-by-atom process," says Julia Khusnutdinova, head of the OIST Coordination Chemistry and Catalysis Unit. "Our method can be compared to Lego construction in which you add one brick at a time," she says.

Molecular wires can vary in length, with different lengths having different molecular properties and practical applications. At present, the longest EMAC reported in the literature is based on nickel and it contains 11 metal atoms in a single linear chain.

Creating molecular wires of different lengths is difficult because it requires a specific ligand to be synthesized each time. The ligand, which can be seen as an 'insulator' by analogy to the macro world, helps the wires to form by bringing the metal atoms together and aligning them into a linear string. However, creating ligands of different lengths can be an elaborate and complicated process.

The OIST researchers have found a new way to overcome this problem. "We have created a single dynamic ligand that can be used to synthesize multiple chain lengths," says Dr. Orestes Rivada-Wheelaghan, first author of the paper. "This is much more efficient than making a new ligand each time," he says.

In their paper, published in Angewandte Chemie International Edition, the researchers describe their new stepwise method of creating copper molecular wires. "The ligand opens up from one end to let a metal atom enter and, when the chain extends, the ligand undergoes a sliding movement along the chain to accommodate more metal atoms," says Prof. Khusnutdinova. "This can be likened to a molecular accordion that can be extended and shortened," says Rivada-Wheelaghan. By adding or removing copper atoms one at a time in this way, the researchers can construct molecular wires of different lengths, varying from 1 to 4 copper atoms.

This dynamic ligand offers a new way for chemists to synthesize molecules with specific shapes and properties, creating potential for many practical applications in microelectronics and beyond.

"The next step is to develop dynamic ligands that could be used to create molecular wires made from other metals, or a combination of different metals," says Dr. Rivada-Wheelaghan. "For example, by selectively inserting copper atoms at the termini of the chain, and using a different type of metal at the center of the chain, we could create new compounds with interesting electronic properties," says Prof. Khusnutdinova.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with Legos® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.