Nav: Home

Clean and green: A moss that removes lead (Pb) from water

January 17, 2018

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have demonstrated that that moss can be a green alternative for decontaminating polluted water and soil. Published in PLOS One, the study shows that in particular, the moss Funaria hygrometrica tolerates and absorbs an impressive amount of lead (Pb) from water.

Lead-contaminated water is a serious environmental concern that has recently proved to be disastrous when left untreated. Compounding the problem, the typical way to remove lead or other heavy metals from water requires fossil fuels and a tremendous amount of energy. As an alternative to these typical processes, phytoremediation is a method that uses photosynthesizing organisms to clean up soil or water contamination. The CSRS researchers began their search for a phytoremediation-based removal method by looking at F. hygrometrica, a moss that is known to grow well in sites contaminated with metals like copper, zinc, and lead.

"We found that the moss can function as an excellent lead absorbent when in the protonema stage of development," says first author Misao Itouga. "This valuable ability means that moss protonema will likely make exceptional wastewater cleaners in mining and chemical industries."

To characterize the metal-absorbing ability of the moss, the team first prepared solutions with varying concentrations of 15 different metals and exposed them to F. hygrometrica protonema. After 22 hours of exposure, mass-spectrometer analysis showed that the moss cells had absorbed lead up to 74% of their dry weight, which is quite high and much higher than any of the other metals.

Knowing where the lead accumulates is important for understanding how it occurs and for developing the most efficient phytoremediation. Analysis showed that within the moss protonema cells, more that 85% of the lead had accumulated in the cell walls, with smaller amounts being found in organelle membranes and inside the chloroplasts where photosynthesis occurs.

Focusing on the cell walls, the team found that they absorbed lead even after being removed from living moss. This means that there is something special about the cell walls of this species of moss that allows them to thrive in environments that are toxic to other plants.

Analysis with two-dimensional nuclear magnetic resonance indicated that polygalacturonic acid in the cell walls was responsible for absorbing the lead. "We compared F. hygrometrica data with those from land plants and seaweeds", explains Itouga, "and found that the presence of polygalacturonic acid in the cell wall is one of the characteristics that separated this type of moss from other plants."

They next determined that the protonema cells absorbed lead well at pH values between 3 and 9, which is important because the acidity of metal-polluted water can vary.

"Our findings show that F. hygrometrica is a useful bio-material for recovering lead from aqueous solutions," says Group leader Hitoshi Sakakibara. "and will contribute to the Sustainable Development Goals set by the United Nations, specifically the Life on Land goal. We are currently exploring opportunities to work with recycling-oriented companies."
-end-
Reference:

Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, et al. (2017) Protonema of the moss Funaria hygrometrica can function as a lead (Pb) Adsorbent. PLOS One. 12(12) e0189726 doi: 10.1371/journal.pone.0189726

RIKEN

Related Lead Articles:

Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.
What's more powerful, word-of-mouth or following someone else's lead?
Researchers from the University of Pittsburgh, UCLA and the University of Texas published new research in the INFORMS journal Marketing Science, that reveals the power of word-of-mouth in social learning, even when compared to the power of following the example of someone we trust or admire.
UTI discovery may lead to new treatments
Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments thanks to University of Queensland-led research.
Increasing frailty may lead to death
A new study published in Age and Ageing indicates that frail patients in any age group are more likely to die than those who are not frail.
Discovery could lead to munitions that go further, much faster
Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.
Shorter sleep can lead to dehydration
Adults who sleep just six hours per night -- as opposed to eight -- may have a higher chance of being dehydrated, according to a study by Penn State.
For the brokenhearted, grief can lead to death
Grief can cause inflammation that can kill, according to new research from Rice University.
Lead or follow: What sets leaders apart?
Leaders are more willing to take responsibility for making decisions that affect the welfare of others.
Taking the lead toward witchweed control
A compound that binds to and inhibits a crucial receptor protein offers a new route for controlling a parasitic plant.
How looking at the big picture can lead to better decisions
New research suggests how distancing yourself from a decision may help you make the choice that produces the most benefit for you and others affected.
More Lead News and Lead Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.